# 7.4E: Solving Trigonometric Equations (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Section 6.4 Exercises

Find all solutions on the interval $$0\le \theta <2\pi$$.

1. $$2\sin \left(\theta \right)=-\sqrt{2}$$

2. $$2\sin \left(\theta \right)=\sqrt{3}$$

3. $$2\cos \left(\theta \right)=1$$

4. $$2\cos \left(\theta \right)=-\sqrt{2}$$

5. $$\sin \left(\theta \right)=1$$

6. $$\sin \left(\theta \right)=0$$

7. $$\cos \left(\theta \right)=0$$

8. $$\cos \left(\theta \right)=-1$$

Find all solutions.

9. $$2\cos \left(\theta \right)=\sqrt{2}$$

10. $$2\cos \left(\theta \right)=-1$$

11. $$2\sin \left(\theta \right)=-1$$

12. $$2\sin \left(\theta \right)=-\sqrt{3}$$

Find all solutions.

13. $$2\sin \left(3\theta \right)=1$$

14. $$2\sin \left(2\theta \right)=\sqrt{3}$$

15. $$2\sin \left(3\theta \right)=-\sqrt{2}$$

16. $$2\sin \left(3\theta \right)=-1$$

17. $$2\cos \left(2\theta \right)=1$$

18. $$2\cos \left(2\theta \right)=\sqrt{3}$$

19. $$2\cos \left(3\theta \right)=-\sqrt{2}$$

20. $$2\cos \left(2\theta \right)=-1$$

21. $$\cos \left(\dfrac{\pi }{4} \theta \right)=-1$$

22. $$\sin \left(\dfrac{\pi }{3} \theta \right)=-1$$

23. $$2\sin \left(\pi \theta \right)=1.$$

24. $$2\cos \left(\dfrac{\pi }{5} \theta \right)=\sqrt{3}$$

Find all solutions on the interval $$0\le x<2\pi$$.

25. $$\sin \left(x\right)=0.27$$

26. $$\sin \left(x\right)= 0.48$$

27. $$\sin \left(x\right)= -0.58$$

28. $$\sin \left(x\right)=-0.34$$

29. $$\cos \left(x\right)=-0.55$$

30. $$\sin \left(x\right)= 0.28$$

31. $$\cos \left(x\right)= 0.71$$

32. $$\cos \left(x\right)=-0.07$$

Find the first two positive solutions.

33. $$7\sin \left(6x\right)=2$$

34. $$7\sin \left(5x\right)= 6$$

35. $$5\cos \left(3x\right)=-3$$

36. $$3\cos \left(4x\right)=2$$

37. $$3\sin \left(\dfrac{\pi }{4} x\right)=2$$

38. $$7\sin \left(\dfrac{\pi }{5} x\right)=6$$

39. $$5\cos \left(\dfrac{\pi }{3} x\right)=1$$

40. $$3\cos \left(\dfrac{\pi }{2} x\right)=-2$$

1. $$\dfrac{5\pi}{4}$$, $$\dfrac{7\pi}{4}$$

3. $$\dfrac{\pi}{3}$$, $$\dfrac{5\pi}{3}$$

5. $$\dfrac{\pi}{2}$$

7. $$\dfrac{\pi}{2}$$, $$\dfrac{3\pi}{2}$$

9. $$\dfrac{\pi}{4} + 2 \pi k$$, $$\dfrac{7\pi}{4} + 2 \pi k$$, where $$k$$ is an integer

11. $$\dfrac{7\pi}{6} + 2 \pi k$$, $$\dfrac{11\pi}{6} + 2 \pi k$$, where $$k$$ is an integer

13. $$\dfrac{\pi}{18} + \dfrac{2 \pi}{3} k$$, $$\dfrac{5\pi}{18} + \dfrac{2 \pi}{3} k$$, where $$k$$ is an integer

15. $$\dfrac{5\pi}{12} + \dfrac{2 \pi}{3} k$$, $$\dfrac{7\pi}{12} + \dfrac{2 \pi}{3} k$$, where $$k$$ is an integer

17. $$\dfrac{\pi}{6} + \pi k$$, $$\dfrac{5\pi}{6} + \pi k$$, where $$k$$ is an integer

19. $$\dfrac{\pi}{4} + \dfrac{2 \pi}{3} k$$, $$\dfrac{5\pi}{12} + \dfrac{2 \pi}{3} k$$, where $$k$$ is an integer

21. $$4 + 8k$$, where $$k$$ is an integer

23. $$\dfrac{1}{6} + 2k$$, $$\dfrac{5}{6} + 2k$$, where $$k$$ is an integer

25. 0.2734, 2.8682

27. 3.7603, 5.6645

29. 2.1532, 4.1300

31. 0.7813, 5.5019

33. 0.04829, 0.47531

35. 0.7381, 1.3563

37. 0.9291, 3.0709

39. 1.3077, 4.6923

This page titled 7.4E: Solving Trigonometric Equations (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.