1: Numerical Literacy
- Page ID
- 116674
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- 1.1: Find Multiples and Factors (Part 1)
- A number is a multiple of n if it is the product of a counting number and n. If a number m is a multiple of n, then we say that m is divisible by n. If a • b = m, then a and b are factors of m, and m is the product of a and b. To find all the factors of a counting number, divide the number by each of the counting numbers, in order, until the quotient is smaller than the divisor. Then, list all the factor pairs and write all the factors in order from smallest to largest.
- 1.2: Find Multiples and Factors (Part 2)
- A prime number is a counting number greater than 1 whose only factors are 1 and itself. A composite number is a counting number that is not prime. To determine if a number is prime, divide it by each of the primes, in order, to see if it is a factor of the number. Start with 2 and stop when the quotient is smaller than the divisor or when a prime factor is found. If the number has a prime factor, then it is a composite number. If it has no prime factors, then the number is prime.
- 1.3: Fractions
- Fraction circles and bars are used to help make fractions real and to develop operations on them. Students continue simplifying and evaluating algebraic expressions with fractions, and learn to use the Multiplication Property of Equality to solve equations involving fractions.
- 1.3.1: Visualize Fractions (Part 1)
- 1.3.2: Visualize Fractions (Part 2)
- 1.3.3: Multiply and Divide Fractions (Part 1)
- 1.3.4: Multiply and Divide Fractions (Part 2)
- 1.3.5: Multiply and Divide Mixed Numbers and Complex Fractions (Part 1)
- 1.3.6: Multiply and Divide Mixed Numbers and Complex Fractions (Part 2)
- 1.3.7: Add and Subtract Fractions with Common Denominators
- 1.3.8: Add and Subtract Fractions with Different Denominators (Part 1)
- 1.3.9: Add and Subtract Fractions with Different Denominators (Part 2)
- 1.3.10: Add and Subtract Mixed Numbers (Part 1)
- 1.3.11: Add and Subtract Mixed Numbers (Part 2)
- 1.3.12: Solve Equations with Fractions (Part 1)
- 1.3.13: Solve Equations with Fractions (Part 2)
- 1.3.E: Fractions (Exercises)
- 1.3.S: Fractions (Summary)
- 1.4: Decimals
- Basic operations with decimals are presented, as well as methods for converting fractions to decimals and vice versa. Averages and probability, unit rates and unit prices, and square roots are included to provide opportunities to use and round decimals.
- 1.4.1: Decimals (Part 1)
- 1.4.2: Decimals (Part 2)
- 1.4.3: Decimal Operations (Part 1)
- 1.4.4: Decimal Operations (Part 2)
- 1.4.5: Decimals and Fractions (Part 1)
- 1.4.6: Decimals and Fractions (Part 2)
- 1.4.7: Solve Equations with Decimals
- 1.4.8: Averages and Probability (Part 1)
- 1.4.9: Averages and Probability (Part 2)
- 1.4.10: Ratios and Rate (Part 1)
- 1.4.11: Ratios and Rate (Part 2)
- 1.4.12: Simplify and Use Square Roots (Part 1)
- 1.4.13: Simplify and Use Square Roots (Part 2)
- 1.4.E: Decimals (Exercises)
- 1.4.S: Decimals (Summary)
- 1.5: Expressions
- 1.5.1: Unit 1 - Chapter 1- Introduction to Expressions
- 1.5.2: Unit 1 - Chapter 2- The Order of Operations
- 1.5.3: Unit 1 - Chapter 3- Evaluating Expressions
- 1.5.4: Unit 1 - Chapter 6- Roots and Radicals
- 1.5.4.1: Simplify Expressions with Square Roots
- 1.5.4.1E: Exercises
- 1.5.4.2: Simplify Radical Expressions
- 1.5.4.2E: Exercises
- 1.5.4.3: Simplify Rational Exponents
- 1.5.4.3E: Exercises
- 1.5.4.4: Add, Subtract, and Multiply Radical Expressions
- 1.5.4.4E: Exercises
- 1.5.4.5: Divide Radical Expressions
- 1.5.4.5E: Exercises
- 1.5.4.6: Complex Numbers
- 1.5.4.6E: Exercises
- 1.5.4.7: Chapter 6 Review Exercises
- 1.5.5: Unit 1 - Chapter 7- Exponential and Logarithmic Expressions
- 1.5.5.1: Evaluate Exponential Expressions
- 1.5.5.1E: Exercises
- 1.5.5.2: Evaluate Logarithms
- 1.5.5.2E: Exercises
- 1.5.5.3: Use the Properties of Logarithms
- 1.5.5.3E: Exercises
- 1.5.5.4: Chapter 7 Review Exercises
- 1.6: Percents
- Conversions among percents, fractions, and decimals are explored. Applications of percent include calculating sales tax, commission, and simple interest. Proportions and solving percent equations as proportions are addressed as well.
- 1.6.1: Understand Percent
- 1.6.2: Solve General Applications of Percent
- 1.6.3: Solve Sales Tax, Commission, and Discount Applications
- 1.6.4: Solve Simple Interest Applications
- 1.6.5: Solve Proportions and their Applications (Part 1)
- 1.6.6: Solve Proportions and their Applications (Part 2)
- 1.6.E: Percents (Exercises)
- 1.6.S: Percents (Summary)