# 4.6E: Exercises for Section 4.6

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

In exercises 1 - 6, evaluate the limit.

1) Evaluate the limit $$\displaystyle \lim_{x→∞}\frac{e^x}{x}$$.

2) Evaluate the limit $$\displaystyle \lim_{x→∞}\frac{e^x}{x^k}$$.

$$\displaystyle \lim_{x→∞}\frac{e^x}{x^k} \quad = \quad ∞$$

3) Evaluate the limit $$\displaystyle \lim_{x→∞}\frac{\ln x}{x^k}$$.

4) Evaluate the limit $$\displaystyle \lim_{x→a}\frac{x−a}{x^2−a^2}$$.

$$\displaystyle \lim_{x→a}\frac{x−a}{x^2−a^2} \quad = \quad \frac{1}{2a}$$

5. Evaluate the limit $$\displaystyle \lim_{x→a}\frac{x−a}{x^3−a^3}$$.

6. Evaluate the limit $$\displaystyle \lim_{x→a}\frac{x−a}{x^n−a^n}$$.

$$\displaystyle \lim_{x→a}\frac{x−a}{x^n−a^n} \quad = \quad \frac{1}{na^{n−1}}$$

In exercises 7 - 11, determine whether you can apply L’Hôpital’s rule directly. Explain why or why not. Then, indicate if there is some way you can alter the limit so you can apply L’Hôpital’s rule.

7) $$\displaystyle \lim_{x→0^+}x^2\ln x$$

8) $$\displaystyle \lim_{x→∞}x^{1/x}$$

Cannot apply directly; use logarithms

9) $$\displaystyle \lim_{x→0}x^{2/x}$$

10) $$\displaystyle \lim_{x→0}\frac{x^2}{1/x}$$

Cannot apply directly; rewrite as $$\displaystyle \lim_{x→0}x^3$$

11) $$\displaystyle \lim_{x→∞}\frac{e^x}{x}$$

In exercises 12 - 40, evaluate the limits with either L’Hôpital’s rule or previously learned methods.

12) $$\displaystyle \lim_{x→3}\frac{x^2−9}{x−3}$$

$$\displaystyle \lim_{x→3}\frac{x^2−9}{x−3} \quad = \quad 6$$

13) $$\displaystyle \lim_{x→3}\frac{x^2−9}{x+3}$$

14) $$\displaystyle \lim_{x→0}\frac{(1+x)^{−2}−1}{x}$$

$$\displaystyle \lim_{x→0}\frac{(1+x)^{−2}−1}{x} \quad = \quad -2$$

15) $$\displaystyle \lim_{x→π/2}\frac{\cos x}{\frac{π}{2}−x}$$

16) $$\displaystyle \lim_{x→π}\frac{x−π}{\sin x}$$

$$\displaystyle \lim_{x→π}\frac{x−π}{\sin x} \quad = \quad -1$$

17) $$\displaystyle \lim_{x→1}\frac{x−1}{\sin x}$$

18) $$\displaystyle \lim_{x→0}\frac{(1+x)^n−1}{x}$$

$$\displaystyle \lim_{x→0}\frac{(1+x)^n−1}{x} \quad = \quad n$$

19) $$\displaystyle \lim_{x→0}\frac{(1+x)^n−1−nx}{x^2}$$

20) $$\displaystyle \lim_{x→0}\frac{\sin x−\tan x}{x^3}$$

$$\displaystyle \lim_{x→0}\frac{\sin x−\tan x}{x^3} \quad = \quad −\frac{1}{2}$$

21) $$\displaystyle \lim_{x→0}\frac{\sqrt{1+x}−\sqrt{1−x}}{x}$$

22) $$\displaystyle \lim_{x→0}\frac{e^x−x−1}{x^2}$$

$$\displaystyle \lim_{x→0}\frac{e^x−x−1}{x^2} \quad = \quad \frac{1}{2}$$

23) $$\displaystyle \lim_{x→0}\frac{\tan x}{\sqrt{x}}$$

24) $$\displaystyle \lim_{x→1}\frac{x-1}{\ln x}$$

$$\displaystyle \lim_{x→1}\frac{x-1}{\ln x} \quad = \quad 1$$

25) $$\displaystyle \lim_{x→0}\,(x+1)^{1/x}$$

26) $$\displaystyle \lim_{x→1}\frac{\sqrt{x}−\sqrt[3]{x}}{x−1}$$

$$\displaystyle \lim_{x→1}\frac{\sqrt{x}−\sqrt[3]{x}}{x−1} \quad = \quad \frac{1}{6}$$

27) $$\displaystyle \lim_{x→0^+}x^{2x}$$

28) $$\displaystyle \lim_{x→∞}x\sin\left(\tfrac{1}{x}\right)$$

$$\displaystyle \lim_{x→∞}x\sin\left(\tfrac{1}{x}\right) \quad = \quad 1$$

29) $$\displaystyle \lim_{x→0}\frac{\sin x−x}{x^2}$$

30) $$\displaystyle \lim_{x→0^+}x\ln\left(x^4\right)$$

$$\displaystyle \lim_{x→0^+}x\ln\left(x^4\right) \quad = \quad 0$$

31) $$\displaystyle \lim_{x→∞}(x−e^x)$$

32) $$\displaystyle \lim_{x→∞}x^2e^{−x}$$

$$\displaystyle \lim_{x→∞}x^2e^{−x} \quad = \quad 0$$

33) $$\displaystyle \lim_{x→0}\frac{3^x−2^x}{x}$$

34) $$\displaystyle \lim_{x→0}\frac{1+1/x}{1−1/x}$$

$$\displaystyle \lim_{x→0}\frac{1+1/x}{1−1/x} \quad = \quad -1$$

35) $$\displaystyle \lim_{x→π/4}(1−\tan x)\cot x$$

36) $$\displaystyle \lim_{x→∞}xe^{1/x}$$

$$\displaystyle \lim_{x→∞}xe^{1/x} \quad = \quad ∞$$

37) $$\displaystyle \lim_{x→0}x^{1/\cos x}$$

38) $$\displaystyle \lim_{x→0^{+} }x^{1/x}$$

$$\displaystyle \lim_{x→0^{+} }x^{1/x} \quad = \quad 0$$

39) $$\displaystyle \lim_{x→0}\left(1−\frac{1}{x}\right)^x$$

40) $$\displaystyle \lim_{x→∞}\left(1−\frac{1}{x}\right)^x$$

$$\displaystyle \lim_{x→∞}\left(1−\frac{1}{x}\right)^x \quad = \quad \frac{1}{e}$$

For exercises 41 - 50, use a calculator to graph the function and estimate the value of the limit, then use L’Hôpital’s rule to find the limit directly.

41) [T] $$\displaystyle \lim_{x→0}\frac{e^x−1}{x}$$

42) [T] $$\displaystyle \lim_{x→0}x\sin\left(\tfrac{1}{x}\right)$$

$$\displaystyle \lim_{x→0}x\sin\left(\tfrac{1}{x}\right) \quad = \quad 0$$

43) [T] $$\displaystyle \lim_{x→1}\frac{x−1}{1−\cos(πx)}$$

44) [T] $$\displaystyle \lim_{x→1}\frac{e^{x−1}−1}{x−1}$$

$$\displaystyle \lim_{x→1}\frac{e^{x−1}−1}{x−1} \quad = \quad 1$$

45) [T] $$\displaystyle \lim_{x→1}\frac{(x−1)^2}{\ln x}$$

46) [T] $$\displaystyle \lim_{x→π}\frac{1+\cos x}{\sin x}$$

$$\displaystyle \lim_{x→π}\frac{1+\cos x}{\sin x} \quad = \quad 0$$

47) [T] $$\displaystyle \lim_{x→0}\left(\csc x−\frac{1}{x}\right)$$

48) [T] $$\displaystyle \lim_{x→0^+}\tan\left(x^x\right)$$

$$\displaystyle \lim_{x→0^+}\tan\left(x^x\right) \quad = \quad \tan 1$$
49) [T] $$\displaystyle \lim_{x→0^+}\frac{\ln x}{\sin x}$$
50) [T] $$\displaystyle \lim_{x→0}\frac{e^x−e^{−x}}{x}$$
$$\displaystyle \lim_{x→0}\frac{e^x−e^{−x}}{x} \quad = \quad 2$$