5.7E: Exercises for Section 5.7
- Last updated
- Jun 30, 2021
- Save as PDF
- Page ID
- 72044
( \newcommand{\kernel}{\mathrm{null}\,}\)
In exercises 1 - 6, evaluate each integral in terms of an inverse trigonometric function.
1) \displaystyle ∫^{\sqrt{3}/2}_0\frac{dx}{\sqrt{1−x^2}}
- Answer
- \displaystyle ∫^{\sqrt{3}/2}_0\frac{dx}{\sqrt{1−x^2}} \quad = \quad \sin^{−1}x\bigg|^{\sqrt{3}/2}_0=\dfrac{π}{3}
2) \displaystyle ∫^{1/2}_{−1/2}\frac{dx}{\sqrt{1−x^2}}
3) \displaystyle ∫^1_{\sqrt{3}}\frac{dx}{\sqrt{1+x^2}}
- Answer
- \displaystyle ∫^1_{\sqrt{3}}\frac{dx}{\sqrt{1+x^2}} \quad = \quad \tan^{−1}x\bigg|^1_{\sqrt{3}}=−\dfrac{π}{12}
4) \displaystyle ∫^{\sqrt{3}}_{\frac{1}{\sqrt{3}}}\frac{dx}{1+x^2}
5) \displaystyle ∫^{\sqrt{2}}_1\frac{dx}{|x|\sqrt{x^2−1}}
- Answer
- \displaystyle ∫^{\sqrt{2}}_1\frac{dx}{|x|\sqrt{x^2−1}} \quad = \quad \sec^{−1}x\bigg|^{\sqrt{2}}_1=\dfrac{π}{4}
6) \displaystyle ∫^{\frac{2}{\sqrt{3}}}_1\frac{dx}{|x|\sqrt{x^2−1}}
In exercises 7 - 12, find each indefinite integral, using appropriate substitutions.
7) \displaystyle ∫\frac{dx}{\sqrt{9−x^2}}
- Answer
- \displaystyle ∫\frac{dx}{\sqrt{9−x^2}} \quad = \quad \sin^{−1}\left(\frac{x}{3}\right)+C
8) \displaystyle ∫\frac{dx}{\sqrt{1−16x^2}}
9) \displaystyle ∫\frac{dx}{9+x^2}
- Answer
- \displaystyle ∫\frac{dx}{9+x^2} \quad = \quad \frac{1}{3}\tan^{−1}\left(\frac{x}{3}\right)+C
10) \displaystyle ∫\frac{dx}{25+16x^2}
11) \displaystyle ∫\frac{dx}{x\sqrt{x^2−9}}
- Answer
- \displaystyle ∫\frac{dx}{x\sqrt{x^2−9}} \quad = \quad \frac{1}{3}\sec^{−1}\left(\frac{|x|}{3}\right)+C
12) \displaystyle ∫\frac{dx}{x\sqrt{4x^2−16}}
13) Explain the relationship \displaystyle −\cos^{−1}t+C=∫\frac{dt}{\sqrt{1−t^2}}=\sin^{−1}t+C. Is it true, in general, that \cos^{−1}t=−\sin^{−1}t?
- Answer
- \cos(\frac{π}{2}−θ)=\sin θ. So, \sin^{−1}t=\dfrac{π}{2}−\cos^{−1}t. They differ by a constant.
14) Explain the relationship \displaystyle \sec^{−1}t+C=∫\frac{dt}{|t|\sqrt{t^2−1}}=−\csc^{−1}t+C. Is it true, in general, that \sec^{−1}t=−\csc^{−1}t?
15) Explain what is wrong with the following integral: \displaystyle ∫^2_1\frac{dt}{\sqrt{1−t^2}}.
- Answer
- \sqrt{1−t^2} is not defined as a real number when t>1.
16) Explain what is wrong with the following integral: \displaystyle ∫^1_{−1}\frac{dt}{|t|\sqrt{t^2−1}}.
- Answer
- \sqrt{t^2−1} is not defined as a real number when -1 \lt t \lt 1, and the integrand is undefined when t = -1 or t = 1.
In exercises 17 - 20, solve for the antiderivative of f with C=0, then use a calculator to graph f and the antiderivative over the given interval [a,b]. Identify a value of C such that adding C to the antiderivative recovers the definite integral \displaystyle F(x)=∫^x_af(t)\,dt.
17) [T] \displaystyle ∫\frac{1}{\sqrt{9−x^2}}\,dx over [−3,3]
- Answer
-
The antiderivative is \sin^{−1}(\frac{x}{3})+C. Taking C=\frac{π}{2} recovers the definite integral.
18) [T] \displaystyle ∫\frac{9}{9+x^2}\,dx over [−6,6]
19) [T] \displaystyle ∫\frac{\cos x}{4+\sin^2x}\,dx over [−6,6]
- Answer
-
The antiderivative is \frac{1}{2}\tan^{−1}(\frac{\sin x}{2})+C. Taking C=\frac{1}{2}\tan^{−1}(\frac{\sin(6)}{2}) recovers the definite integral.
20) [T] \displaystyle ∫\frac{e^x}{1+e^{2x}}\,dx over [−6,6]
In exercises 21 - 26, compute the antiderivative using appropriate substitutions.
21) \displaystyle ∫\frac{\sin^{−1}t}{\sqrt{1−t^2}}\,dt
- Answer
- \displaystyle ∫\frac{\sin^{−1}t\,dt}{\sqrt{1−t^2}} \quad = \quad \tfrac{1}{2}(\sin^{−1}t)^2+C
22) \displaystyle ∫\frac{dt}{\sin^{−1} t\sqrt{1−t^2}}
23) \displaystyle ∫\frac{\tan^{−1}(2t)}{1+4t^2}\,dt
- Answer
- \displaystyle ∫\frac{\tan^{−1}(2t)}{1+4t^2}\,dt \quad = \quad \frac{1}{4}(\tan^{−1}(2t))^2+C
24) \displaystyle ∫\frac{t\tan^{−1}(t^2)}{1+t^4}\,dt
25) \displaystyle ∫\frac{\sec^{−1}\left(\tfrac{t}{2}\right)}{|t|\sqrt{t^2−4}}\,dt
- Answer
- \displaystyle ∫\frac{\sec^{−1}\left(\tfrac{t}{2}\right)}{|t|\sqrt{t^2−4}}\,dt \quad = \quad \tfrac{1}{4}(\sec^{−1}\left(\tfrac{t}{2}\right))^2+C
26) \displaystyle ∫\frac{t\sec^{−1}(t^2)}{t^2\sqrt{t^4−1}}\,dt
In exercises 27 - 32, use a calculator to graph the antiderivative of f with C=0 over the given interval [a,b]. Approximate a value of C, if possible, such that adding C to the antiderivative gives the same value as the definite integral \displaystyle F(x)=∫^x_af(t)\,dt.
27) [T] \displaystyle ∫\frac{1}{x\sqrt{x^2−4}}\,dx over [2,6]
- Answer
-
The antiderivative is \frac{1}{2}\sec^{−1}(\frac{x}{2})+C. Taking C=0 recovers the definite integral over [2,6].
28) [T] \displaystyle ∫\frac{1}{(2x+2)\sqrt{x}}\,dx over [0,6]
29) [T] \displaystyle ∫\frac{(\sin x+x\cos x)}{1+x^2\sin^2x\,dx} over [−6,6]
- Answer
-
The general antiderivative is \tan^{−1}(x\sin x)+C. Taking C=−\tan^{−1}(6\sin(6)) recovers the definite integral.
30) [T] \displaystyle ∫\frac{2e^{−2x}}{\sqrt{1−e^{−4x}}}\,dx over [0,2]
31) [T] \displaystyle ∫\frac{1}{x+x\ln 2x} over [0,2]
- Answer
-
The general antiderivative is \tan^{−1}(\ln x)+C. Taking \displaystyle C=\tfrac{π}{2}=\lim_{t \to ∞}\tan^{−1} t recovers the definite integral.
32) [T] \displaystyle ∫\frac{\sin^{−1}x}{\sqrt{1−x^2}} over [−1,1]
In exercises 33 - 38, compute each integral using appropriate substitutions.
33) \displaystyle ∫\frac{e^t}{\sqrt{1−e^{2t}}}\,dt
- Answer
- \displaystyle ∫\frac{e^t}{\sqrt{1−e^{2t}}}\,dt \quad = \quad \sin^{−1}(e^t)+C
34) \displaystyle ∫\frac{e^t}{1+e^{2t}}\,dt
35) \displaystyle ∫\frac{dt}{t\sqrt{1−\ln^2t}}
- Answer
- \displaystyle ∫\frac{dt}{t\sqrt{1−\ln^2t}} \quad = \quad \sin^{−1}(\ln t)+C
36) \displaystyle ∫\frac{dt}{t(1+\ln^2t)}
37) \displaystyle ∫\frac{\cos^{−1}(2t)}{\sqrt{1−4t^2}}\,dt
- Answer
- \displaystyle ∫\frac{\cos^{−1}(2t)}{\sqrt{1−4t^2}}\,dt \quad = \quad −\frac{1}{2}(\cos^{−1}(2t))^2+C
38) \displaystyle ∫\frac{e^t\cos^{−1}(e^t)}{\sqrt{1−e^{2t}}}\,dt
In exercises 39 - 42, compute each definite integral.
39) \displaystyle ∫^{1/2}_0\frac{\tan(\sin^{−1}t)}{\sqrt{1−t^2}}\,dt
- Answer
- \displaystyle ∫^{1/2}_0\frac{\tan(\sin^{−1}t)}{\sqrt{1−t^2}}\,dt \quad = \quad \frac{1}{2}\ln\left(\frac{4}{3}\right)
40) \displaystyle ∫^{1/2}_{1/4}\frac{\tan(\cos^{−1}t)}{\sqrt{1−t^2}}\,dt
41) \displaystyle ∫^{1/2}_0\frac{\sin(\tan^{−1}t)}{1+t^2}\,dt
- Answer
- \displaystyle ∫^{1/2}_0\frac{\sin(\tan^{−1}t)}{1+t^2}\,dt \quad = \quad 1−\frac{2}{\sqrt{5}}
42) \displaystyle ∫^{1/2}_0\frac{\cos(\tan^{−1}t)}{1+t^2}\,dt
43) For A>0, compute \displaystyle I(A)=∫^{A}_{−A}\frac{dt}{1+t^2} and evaluate \displaystyle \lim_{a→∞}I(A), the area under the graph of \dfrac{1}{1+t^2} on [−∞,∞].
- Answer
- 2\tan^{−1}(A)→π as A→∞
44) For 1<B<∞, compute \displaystyle I(B)=∫^B_1\frac{dt}{t\sqrt{t^2−1}} and evaluate \displaystyle \lim_{B→∞}I(B), the area under the graph of \frac{1}{t\sqrt{t^2−1}} over [1,∞).
45) Use the substitution u=\sqrt{2}\cot x and the identity 1+\cot^2x=\csc^2x to evaluate \displaystyle ∫\frac{dx}{1+\cos^2x}. (Hint: Multiply the top and bottom of the integrand by \csc^2x.)
- Answer
- Using the hint, one has \displaystyle ∫\frac{\csc^2x}{\csc^2x+\cot^2x}\,dx=∫\frac{\csc^2x}{1+2\cot^2x}\,dx. Set u=\sqrt{2}\cot x. Then, du=−\sqrt{2}\csc^2x and the integral is \displaystyle −\tfrac{1}{\sqrt{2}}∫\frac{du}{1+u^2}=−\tfrac{\sqrt{2}}{2}\tan^{−1}u+C=\tfrac{\sqrt{2}}{2}\tan^{−1}(\sqrt{2}\cot x)+C. If one uses the identity \tan^{−1}s+\tan^{−1}(\frac{1}{s})=\frac{π}{2}, then this can also be written \tfrac{\sqrt{2}}{2}\tan^{−1}(\frac{\tan x}{\sqrt{2}})+C.
46) [T] Approximate the points at which the graphs of f(x)=2x^2−1 and g(x)=(1+4x^2)^{−3/2} intersect, and approximate the area between their graphs accurate to three decimal places.
47) [T] Approximate the points at which the graphs of f(x)=x^2−1 and f(x)=x^2−1 intersect, and approximate the area between their graphs accurate to three decimal places.
- Answer
- x≈±1.13525. The left endpoint estimate with N=100 is 2.796 and these decimals persist for N=500.
48) Use the following graph to prove that \displaystyle ∫^x_0\sqrt{1−t^2}\,dt=\frac{1}{2}x\sqrt{1−x^2}+\frac{1}{2}\sin^{−1}x.