Skip to main content
Mathematics LibreTexts

4.3: Inverse Trigonometric Properties

  • Page ID
    61259
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives

    • Relate the concept of inverse functions to trigonometric functions.
    • Reduce the composite function to an algebraic expression involving no trigonometric functions.
    • Use the inverse reciprocal properties.
    • Compose each of the six basic trigonometric functions with \(\tan^{-1}(x)\).

    Evaluating Compositions of the Form \(f^{-1}(g(x))\)

    Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the form \(f^{-1}(g(x))\). For special values of \(x\),we can exactly evaluate the inner function and then the outer, inverse function. However, we can find a more general approach by considering the relation between the two acute angles of a right triangle where one is \(\theta\), making the other \(\dfrac{\pi}{2}−\theta\).Consider the sine and cosine of each angle of the right triangle in Figure \(\PageIndex{1}\).

    An illustration of a right triangle with angles theta and pi/2 - theta. Opposite the angle theta and adjacent the angle pi/2-theta is the side a. Adjacent the angle theta and opposite the angle pi/2 - theta is the side b. The hypoteneuse is labeled c.
    Figure \(\PageIndex{1}\): Right triangle illustrating the cofunction relationships

    Because \(\cos \theta=\dfrac{b}{c}=sin\left(\dfrac{\pi}{2}−\theta\right)\), we have \({\sin}^{−1}(\cos \theta)=\dfrac{\pi}{2}−\theta\) if \(0≤\theta≤\pi\). If \(\theta\) is not in this domain, then we need to find another angle that has the same cosine as \(\theta\) and does belong to the restricted domain; we then subtract this angle from \(\dfrac{\pi}{2}\).Similarly, \(\sin \theta=\dfrac{a}{c}=\cos\left(\dfrac{\pi}{2}−\theta\right)\), so \({\cos}^{−1}(\sin \theta)=\dfrac{\pi}{2}−\theta\) if \(−\dfrac{\pi}{2}≤\theta≤\dfrac{\pi}{2}\). These are just the function-cofunction relationships presented in another way.

    Given functions of the form \({\sin}^{−1}(\cos x)\) and \({\cos}^{−1}(\sin x)\), evaluate them.

    1. If \(x\) is in \([ 0,\pi ]\), then \({\sin}^{−1}(\cos x)=\dfrac{\pi}{2}−x\).
    2. If \(x\) is not in \([ 0,\pi ]\), then find another angle \(y\) in \([ 0,\pi ]\) such that \(\cos y=\cos x\).

      \[{\sin}^{−1}(\cos x)=\dfrac{\pi}{2}−y\]

    3. If \(x\) is in \(\left[ −\dfrac{\pi}{2},\dfrac{\pi}{2} \right]\), then \({\cos}^{−1}(\sin x)=\dfrac{\pi}{2}−x\).
    4. If \(x\) is not in \(\left[ −\dfrac{\pi}{2},\dfrac{\pi}{2} \right]\), then find another angle \(y\) in \(\left[ −\dfrac{\pi}{2},\dfrac{\pi}{2} \right]\) such that \(\sin y=\sin x\).

      \[{\cos}^{−1}(\sin x)=\dfrac{\pi}{2}−y\]

    Example \(\PageIndex{1}\): Evaluating the Composition of an Inverse Sine with a Cosine

    Evaluate \({\sin}^{−1}\left(\cos\left(\dfrac{13\pi}{6}\right)\right)\)

    1. by direct evaluation.
    2. by the method described previously.

    Solution

    1. Here, we can directly evaluate the inside of the composition. \[\begin{align*} \cos\left(\dfrac{13\pi}{6}\right)&= \cos\left (\dfrac{\pi}{6}+2\pi\right )\\ &= \cos\left (\dfrac{\pi}{6}\right )\\ &= \dfrac{\sqrt{3}}{2} \end{align*}\] Now, we can evaluate the inverse function as we did earlier. \[{\sin}^{−1}\left (\dfrac{\sqrt{3}}{2}\right )=\dfrac{\pi}{3}\]
    2. We have \(x=\dfrac{13\pi}{6}\), \(y=\dfrac{\pi}{6}\), and \[\begin{align*} {\sin}^{-1}\left (\cos \left (\dfrac{13\pi}{6} \right ) \right )&= \dfrac{\pi}{2}-\dfrac{\pi}{6}\\ &= \dfrac{\pi}{3} \end{align*}\]

    Exercise \(\PageIndex{1}\)

    Evaluate \({\cos}^{−1}\left (\sin\left (−\dfrac{11\pi}{4}\right )\right )\).

    Answer

    \(\dfrac{3\pi}{4}\)

    Evaluating Compositions of the Form \(f(g^{−1}(x))\)

    To evaluate compositions of the form \(f(g^{−1}(x))\), where \(f\) and \(g\) are any two of the functions sine, cosine, or tangent and \(x\) is any input in the domain of \(g^{−1}\), we have exact formulas, such as \(\sin({\cos}^{−1}x)=\sqrt{1−x^2}\). When we need to use them, we can derive these formulas by using the trigonometric relations between the angles and sides of a right triangle, together with the use of Pythagoras’s relation between the lengths of the sides. We can use the Pythagorean identity, \({\sin}^2 x+{\cos}^2 x=1\), to solve for one when given the other. We can also use the inverse trigonometric functions to find compositions involving algebraic expressions.

    Example \(\PageIndex{2}\): Evaluating the Composition of a Sine with an Inverse Cosine

    Find an exact value for \(\sin\left({\cos}^{−1}\left(\dfrac{4}{5}\right)\right)\).

    Solution

    Beginning with the inside, we can say there is some angle such that \(\theta={\cos}^{−1}\left (\dfrac{4}{5}\right )\), which means \(\cos \theta=\dfrac{4}{5}\), and we are looking for \(\sin \theta\). We can use the Pythagorean identity to do this.

    \[\begin{align*} {\sin}^2 \theta+{\cos}^2 \theta&= 1\qquad \text{Use our known value for cosine}\\ {\sin}^2 \theta+{\left (\dfrac{4}{5} \right )}^2&= 1\qquad \text{Solve for sine}\\ {\sin}^2 \theta&= 1-\dfrac{16}{25}\\ \sin \theta&=\pm \dfrac{9}{25}\\ &= \pm \dfrac{3}{5} \end{align*}\]

    Since \(\theta={\cos}^{−1}\left (\dfrac{4}{5}\right )\) is in quadrant I, \(\sin \theta\) must be positive, so the solution is \(35\). See Figure \(\PageIndex{11}\).

    An illustration of a right triangle with an angle theta. Oppostie the angle theta is a side with length 3. Adjacent the angle theta is a side with length 4. The hypoteneuse has angle of length 5.
    Figure \(\PageIndex{11}\): Right triangle illustrating that if \(\cos \theta=\dfrac{4}{5}\), then \(\sin \theta=\dfrac{3}{5}\)

    We know that the inverse cosine always gives an angle on the interval \([ 0,\pi ]\), so we know that the sine of that angle must be positive; therefore \(\sin \left ({\cos}^{−1}\left (\dfrac{4}{5} \right ) \right )=\sin \theta=\dfrac{3}{5}\).

    Exercise \(\PageIndex{2}\)

    Evaluate \(\cos \left ({\tan}^{−1} \left (\dfrac{5}{12} \right ) \right )\).

    Answer

    \(\frac{12}{13}\)

    Example \(\PageIndex{3}\): Evaluating the Composition of a Sine with an Inverse Tangent

    Find an exact value for \(\sin\left({\tan}^{−1}\left(\dfrac{7}{4}\right)\right)\).

    Solution

    While we could use a similar technique as in Example \(\PageIndex{6}\), we will demonstrate a different technique here. From the inside, we know there is an angle such that \(\tan \theta=\dfrac{7}{4}\). We can envision this as the opposite and adjacent sides on a right triangle, as shown in Figure \(\PageIndex{12}\).

    An illustration of a right triangle with angle theta. Adjacent the angle theta is a side with length 4. Opposite the angle theta is a side with length 7.
    Figure \(\PageIndex{12}\): A right triangle with two sides known

    Using the Pythagorean Theorem, we can find the hypotenuse of this triangle.

    \[\begin{align*}
    4^2+7^2&= {hypotenuse}^2\\
    hypotenuse&=\sqrt{65}\\
    \text {Now, we can evaluate the sine of the angle as the opposite side divided by the hypotenuse.}\\
    \sin \theta&= \dfrac{7}{\sqrt{65}}\\
    \text {This gives us our desired composition.}\\
    \sin \left ({\tan}^{-1} \left (\dfrac{7}{4} \right ) \right )&= \sin \theta\\
    &= \dfrac{7}{\sqrt{65}}\\
    &= \dfrac{7\sqrt{65}}{65}
    \end{align*}\]

    Exercise \(\PageIndex{3}\)

    Evaluate \(\cos\left({\sin}^{−1}\left(\dfrac{7}{9}\right)\right)\).

    Answer

    \(\dfrac{4\sqrt{2}}{9}\)

    Example \(\PageIndex{4}\): Finding the Cosine of the Inverse Sine of an Algebraic Expression

    Find a simplified expression for \(\cos\left({\sin}^{−1}\left(\dfrac{x}{3}\right)\right)\) for \(−3≤x≤3\).

    Solution

    We know there is an angle \(\theta\) such that \(\sin \theta=\dfrac{x}{3}\).

    \[\begin{align*} {\sin}^2 \theta+{\cos}^2 \theta&= 1\qquad \text{Use the Pythagorean Theorem}\\ {\left (\dfrac{x}{3}\right )}^2+{\cos}^2 \theta&= 1\qquad \text{Solve for cosine}\\ {\cos}^2 \theta&= 1-\dfrac{x^2}{9}\\ \cos \theta &= \pm \sqrt{\dfrac{9-x^2}{9}}\\ &= \pm \sqrt{\dfrac{9-x^2}{3}} \end{align*}\]

    Because we know that the inverse sine must give an angle on the interval \([ −\dfrac{\pi}{2},\dfrac{\pi}{2} ]\), we can deduce that the cosine of that angle must be positive.

    \(cos\left({\sin}^{−1}\left(\dfrac{x}{3}\right)\right)=\sqrt{\dfrac{9-x^2}{3}}\)

    Exercise \(\PageIndex{4}\)

    Find a simplified expression for \(\sin({\tan}^{−1}(4x))\) for \(−\dfrac{1}{4}≤x≤\dfrac{1}{4}\).

    Answer

    \(\dfrac{4x}{\sqrt{16x^2+1}}\)

    Key Concepts

    • If the inside function is a trigonometric function, then the only possible combinations are \({\sin}^{−1}(\cos x)=\frac{\pi}{2}−x\) if \(0≤x≤\pi\) and \({\cos}^{−1}(\sin x)=\frac{\pi}{2}−x\) if \(−\frac{\pi}{2}≤x≤\frac{\pi}{2}\). See Example \(\PageIndex{1}\) and Example \(\PageIndex{2}\).
    • When evaluating the composition of a trigonometric function with an inverse trigonometric function, draw a reference triangle to assist in determining the ratio of sides that represents the output of the trigonometric function. See Example \(\PageIndex{3}\).
    • When evaluating the composition of a trigonometric function with an inverse trigonometric function, you may use trig identities to assist in determining the ratio of sides. See Example \(\PageIndex{4}\).

    Contributors and Attributions


    This page titled 4.3: Inverse Trigonometric Properties is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License