Skip to main content
Mathematics LibreTexts

5.11.1: Vector Spaces

  • Page ID
    134812
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In this chapter we introduce vector spaces in full generality. The reader will notice some similarity with the discussion of the space \(\mathbb{R}^n\) in Chapter [chap:5]. In fact much of the present material has been developed in that context, and there is some repetition. However, Chapter [chap:6] deals with the notion of an abstract vector space, a concept that will be new to most readers. It turns out that there are many systems in which a natural addition and scalar multiplication are defined and satisfy the usual rules familiar from \(\mathbb{R}^n\). The study of abstract vector spaces is a way to deal with all these examples simultaneously. The new aspect is that we are dealing with an abstract system in which all we know about the vectors is that they are objects that can be added and multiplied by a scalar and satisfy rules familiar from \(\mathbb{R}^n\).

    The novel thing is the abstraction. Getting used to this new conceptual level is facilitated by the work done in Chapter [chap:5]: First, the vector manipulations are familiar, giving the reader more time to become accustomed to the abstract setting; and, second, the mental images developed in the concrete setting of \(\mathbb{R}^n\) serve as an aid to doing many of the exercises in Chapter [chap:6].

    The concept of a vector space was first introduced in 1844 by the German mathematician Hermann Grassmann (1809-1877), but his work did not receive the attention it deserved. It was not until 1888 that the Italian mathematician Guiseppe Peano (1858-1932) clarified Grassmann’s work in his book Calcolo Geometrico and gave the vector space axioms in their present form. Vector spaces became established with the work of the Polish mathematician Stephan Banach (1892-1945), and the idea was finally accepted in 1918 when Hermann Weyl (1885-1955) used it in his widely read book Raum-Zeit-Materie (“Space-Time-Matter”), an introduction to the general theory of relativity.


    This page titled 5.11.1: Vector Spaces is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by W. Keith Nicholson (Lyryx Learning Inc.) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.