Skip to main content
Mathematics LibreTexts

5.11.1.1E: Examples and Basic Properties Exercises

  • Page ID
    134814
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Exercises for 1

    solutions

    2

    Let \(V\) denote the set of ordered triples \((x, y, z)\) and define addition in \(V\) as in \(\mathbb{R}^3\). For each of the following definitions of scalar multiplication, decide whether \(V\) is a vector space.

    1. \(a(x, y, z) = (ax, y, az)\)
    2. \(a(x, y, z) = (ax, 0, az)\)
    3. \(a(x, y, z) = (0, 0, 0)\)
    4. \(a(x, y, z) = (2ax, 2ay, 2az)\)
    1. No; S5 fails.
    2. No; S4 and S5 fail.

    Are the following sets vector spaces with the indicated operations? If not, why not?

    1. The set \(V\) of nonnegative real numbers; ordinary addition and scalar multiplication.
    2. The set \(V\) of all polynomials of degree \(\geq 3\), together with \(0\); operations of \(\mathbf{P}\).
    3. The set of all polynomials of degree \(\leq 3\); operations of \(\mathbf{P}\).
    4. The set \(\{1, x, x^{2}, \dots\}\); operations of \(\mathbf{P}\).
    5. The set \(V\) of all \(2 \times 2\) matrices of the form \(\left[ \begin{array}{cc} a & b \\ 0 & c \end{array} \right]\); operations of \(\mathbf{M}_{22}\).
    6. The set \(V\) of \(2 \times 2\) matrices with equal column sums; operations of \(\mathbf{M}_{22}\).
    7. The set \(V\) of \(2 \times 2\) matrices with zero determinant; usual matrix operations.
    8. The set \(V\) of real numbers; usual operations.
    9. The set \(V\) of complex numbers; usual addition and multiplication by a real number.
    10. The set \(V\) of all ordered pairs \((x, y)\) with the addition of \(\mathbb{R}^2\), but using scalar multiplication \(a(x, y) = (ax, -ay)\).
    11. The set \(V\) of all ordered pairs \((x, y)\) with the addition of \(\mathbb{R}^2\), but using scalar multiplication \(a(x, y) = (x, y)\) for all \(a\) in \(\mathbb{R}\).
    12. The set \(V\) of all functions \(f\) : \(\mathbb{R} \to \mathbb{R}\) with pointwise addition, but scalar multiplication defined by \((af)(x) = f(ax)\).
    13. The set \(V\) of all \(2 \times 2\) matrices whose entries sum to \(0\); operations of \(\mathbf{M}_{22}\).
    14. The set \(V\) of all \(2 \times 2\) matrices with the addition of \(\mathbf{M}_{22}\) but scalar multiplication \(*\) defined by \(a * X = aX^{T}\).
    1. No; only A1 fails.
    2. No.
    3. Yes.
    4. Yes.
    5. No.
    6. No; only S3 fails.
    7. No; only S4 and S5 fail.

    [ex:ex6_1_3] Let \(V\) be the set of positive real numbers with vector addition being ordinary multiplication, and scalar multiplication being \(a \cdot v = v^{a}\). Show that \(V\) is a vector space.

    [ex:ex6_1_4] If \(V\) is the set of ordered pairs \((x, y)\) of real numbers, show that it is a vector space with addition \((x, y) + (x_{1}, y_{1}) = (x + x_{1}, y + y_{1} + 1)\) and scalar multiplication \(a(x, y) = (ax, ay + a - 1)\). What is the zero vector in \(V\)?

    The zero vector is \((0, -1)\); the negative of \((x, y)\) is \((-x, -2 - y)\).

    Find \(\mathbf{x}\) and \(\mathbf{y}\) (in terms of \(\mathbf{u}\) and \(\mathbf{v}\)) such that:

    \( \begin{array}[t]{rlrcr} 2\mathbf{x} & + & \mathbf{y} & = & \mathbf{u} \\ 5\mathbf{x} & + & 3\mathbf{y} & = & \mathbf{v} \\ \end{array}\) \( \begin{array}[t]{rlrcr} 3\mathbf{x} & - & 2\mathbf{y} & = & \mathbf{u} \\ 4\mathbf{x} & - & 5\mathbf{y} & = & \mathbf{v} \\ \end{array}\)

    1. \(\mathbf{x} = \frac{1}{7}(5\mathbf{u} - 2\mathbf{v}), \mathbf{y} = \frac{1}{7}(4\mathbf{u} - 3\mathbf{v})\)

    In each case show that the condition \(a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}\) in \(V\) implies that \(a = b = c = 0\).

    1. \(V = \mathbb{R}^4\); \(\mathbf{u} = (2, 1, 0, 2)\), \(\mathbf{v} = (1, 1, -1, 0)\), \(\mathbf{w} = (0, 1, 2, 1)\)
    2. \(V =\|{M}_{22}\); \(\mathbf{u} = \left[ \begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array} \right]\), \(\mathbf{v} = \left[ \begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array} \right]\), \(\mathbf{w} = \left[ \begin{array}{rr} 1 & 1 \\ 1 & -1 \end{array} \right]\)
    3. \(V =\|{P}\); \(\mathbf{u} = x^{3} + x\), \(\mathbf{v} = x^{2} + 1\), \(\mathbf{w} = x^{3} - x^{2} + x + 1\)
    4. \(V =\|{F}[0, \pi]\); \(\mathbf{u} = \sin x\), \(\mathbf{v} = \cos x\), \(\mathbf{w} = 1\)—the constant function
    1. Equating entries gives \(a + c = 0\), \(b + c = 0\), \(b + c = 0\), \(a - c = 0\). The solution is \(a = b = c = 0\).
    2. If \(a \sin x + b \cos y + c = 0\) in \(\mathbf{F}[0, \pi]\), then this must hold for every \(x\) in \([0, \pi]\). Taking \(x = 0, \frac{\pi}{2}\), and \(\pi\), respectively, gives \(b + c = 0\), \(a + c = 0\), \(-b + c = 0\) whence, \(a = b = c = 0\).

    Simplify each of the following.

    1. \(3[2(\mathbf{u} - 2\mathbf{v} - \mathbf{w}) + 3(\mathbf{w} - \mathbf{v})] - 7(\mathbf{u} - 3\mathbf{v} - \mathbf{w})\)
    2. \(4(3\mathbf{u} - \mathbf{v} + \mathbf{w}) - 2[(3\mathbf{u} - 2\mathbf{v}) - 3(\mathbf{v} - \mathbf{w})] \newline + 6(\mathbf{w} - \mathbf{u} - \mathbf{v})\)
    1. \(4\mathbf{w}\)

    Show that \(\mathbf{x} = \mathbf{v}\) is the only solution to the equation \(\mathbf{x} + \mathbf{x} = 2\mathbf{v}\) in a vector space \(V\). Cite all axioms used.

    Show that \(-\mathbf{0} = \mathbf{0}\) in any vector space. Cite all axioms used.

    [ex:6_1_10] Show that the zero vector \(\mathbf{0}\) is uniquely determined by the property in axiom A4.

    If \(\mathbf{z} + \mathbf{v} = \mathbf{v}\) for all \(\mathbf{v}\), then \(\mathbf{z} + \mathbf{v} = \mathbf{0} + \mathbf{v}\), so \(\mathbf{z} = \mathbf{0}\) by cancellation.

    [ex:6_1_11] Given a vector \(\mathbf{v}\), show that its negative \(-\mathbf{v}\) is uniquely determined by the property in axiom A5.

    [ex:6_1_12]

    1. Prove (2) of Theorem [thm:017797]. [Hint: Axiom S2.]
    2. Prove that \((-a)\mathbf{v} = -(a\mathbf{v})\) in Theorem [thm:017797] by first computing \((-a)\mathbf{v} + a\mathbf{v}\). Then do it using (4) of Theorem [thm:017797] and axiom S4.
    3. Prove that \(a(-\mathbf{v}) = -(a\mathbf{v})\) in Theorem [thm:017797] in two ways, as in part (b).
    1. \((-a)\mathbf{v} + a\mathbf{v} = (-a + a)\mathbf{v} = 0\mathbf{v} = \mathbf{0}\) by Theorem [thm:017797]. Because also \(-(a\mathbf{v}) + a\mathbf{v} = \mathbf{0}\) (by the definition of \(-(a\mathbf{v})\) in axiom A5), this means that \((-a)\mathbf{v} = -(a\mathbf{v})\) by cancellation. Alternatively, use Theorem [thm:017797](4) to give \((-a)\mathbf{v} = [(-1)a]\mathbf{v} = (-1)(a\mathbf{v}) = -(a\mathbf{v})\).

    [ex:6_1_13] Let \(\mathbf{v}, \mathbf{v}_{1}, \dots, \mathbf{v}_{n}\) denote vectors in a vector space \(V\) and let \(a, a_{1}, \dots, a_{n}\) denote numbers. Use induction on \(n\) to prove each of the following.

    1. \(a(\mathbf{v}_{1} + \mathbf{v}_{2} + \dots + \mathbf{v}_{n}) = a\mathbf{v}_{1} + a\mathbf{v}_{2} + \dots + a\mathbf{v}_{n}\)
    2. \((a_{1} + a_{2} + \dots + a_{n})\mathbf{v} = a_{1}\mathbf{v} + a_{2}\mathbf{v} + \dots + a_{n}\mathbf{v}\)
    1. The case \(n = 1\) is clear, and \(n = 2\) is axiom S3. If \(n > 2\), then \((a_{1} + a_{2} + \dots + a_{n})\mathbf{v} = [a_{1} + (a_{2} + \dots + a_{n})]\mathbf{v} = a_{1}\mathbf{v} + (a_{2} + \dots + a_{n})\mathbf{v} = a_{1}\mathbf{v} + (a_{2}\mathbf{v} + \dots + a_{n}\mathbf{v})\) using the induction hypothesis; so it holds for all \(n\).

    [ex:6_1_14] Verify axioms A2—A5 and S2—S5 for the space \(\mathbf{F}[a, b]\) of functions on \([a, b]\) (Example [exa:017760]).

    Prove each of the following for vectors \(\mathbf{u}\) and \(\mathbf{v}\) and scalars \(a\) and \(b\).

    1. If \(a\mathbf{v} = \mathbf{0}\), then \(a = 0\) or \(\mathbf{v} = \mathbf{0}\).
    2. If \(a\mathbf{v} = b\mathbf{v}\) and \(\mathbf{v} \neq \mathbf{0}\), then \(a = b\).
    3. If \(a\mathbf{v} = a\mathbf{w}\) and \(a \neq 0\), then \(\mathbf{v} = \mathbf{w}\).
    1. If \(a\mathbf{v} = a\mathbf{w}\), then \(\mathbf{v} = 1\mathbf{v} = (a^{-1}a)\mathbf{v} = a^{-1}(a\mathbf{v}) = a^{-1}(a\mathbf{w}) = (a^{-1}a)\mathbf{w} = 1\mathbf{w} = \mathbf{w}\).

    By calculating \((1 + 1)(\mathbf{v} + \mathbf{w})\) in two ways (using axioms S2 and S3), show that axiom A2 follows from the other axioms.

    [ex:ex6_1_17] Let \(V\) be a vector space, and define \(V^{n}\) to be the set of all \(n\)-tuples \((\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{n})\) of \(n\) vectors \(\mathbf{v}_{i}\), each belonging to \(V\). Define addition and scalar multiplication in \(V^{n}\) as follows:

    \[\begin{gathered} (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) + (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \\ \quad = (\mathbf{u}_1 + \mathbf{v}_1, \mathbf{u}_2 + \mathbf{v}_2, \dots, \mathbf{u}_n + \mathbf{v}_n) \\ a(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = (a\mathbf{v}_1, a\mathbf{v}_2, \dots, a\mathbf{v}_n)\end{gathered} \nonumber \]

    Show that \(V^{n}\) is a vector space.

    [ex:6_1_18] Let \(V^{n}\) be the vector space of \(n\)-tuples from the preceding exercise, written as columns. If \(A\) is an \(m \times n\) matrix, and \(X\) is in \(V^{n}\), define \(AX\) in \(V^{m}\) by matrix multiplication. More precisely, if

    \[A = \left[ a_{ij} \right] \mbox{ and } X = \left[ \begin{array}{c} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{array} \right], \mbox{ let } AX = \left[ \begin{array}{c} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_n \end{array} \right] \nonumber \]

    where \(\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \dots + a_{in}\mathbf{v}_{n}\) for each \(i\). Prove that:

    1. \(B(AX) = (BA)X\)
    2. \((A + A_{1})X = AX + A_{1}X\)
    3. \(A(X + X_{1}) = AX + AX_{1}\)
    4. \((kA)X = k(AX) = A(kX)\) if \(k\) is any number
    5. \(IX = X\) if \(I\) is the \(n \times n\) identity matrix
    6. Let \(E\) be an elementary matrix obtained by performing a row operation on the rows of \(I_{n}\) (see Section [sec:2_5]). Show that \(EX\) is the column resulting from performing that same row operation on the vectors (call them rows) of \(X\). [Hint: Lemma [lem:005213].]

    5.11.1.1E: Examples and Basic Properties Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?