Skip to main content
Mathematics LibreTexts

6.1E Exercises

  • Page ID
    155176
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Rational Functions

    Algebraically, identify the domain and any roots and vertical asymptotes of the rational functions.

    1. \( f(x) = \dfrac{x}{x+1} \)

    2. \( g(x) = \dfrac{ 2x^2 - 3x}{x-4} \)

    3. \( h(x) = \dfrac{5}{x^2 + 1} \)

    4. \( p(x) = \dfrac{3x^2 - 5x + 2}{x^2 - 4x + 4} \)

    5. \( q(x) = \dfrac{x^3 - x^2}{2x^2+x-6} \)

    6. \( r(x) = \dfrac{ 2x}{x^2-9} \)

    7. \( C(t) = \dfrac{t^2 - 2t+1}{t^3 - 8} \)

    Answer
    1. Domain: all real numbers \(x \neq -1\). Roots: \(x = 0\). V.A. \(x = -1\).
    2. Domain: all real numbers \(x \neq 4 \). Roots: \(x = 0, \frac{3}{2} \). V.A. \( x = 4\).
    3. Domain: all real numbers. Roots: none. No V.A.s.
    4. Domain: all real numbers \(x \neq 2 \). Roots: \( x = \frac{2}{3}, 1 \). V.A. \( x = 2 \).
    5. Domain: all real numbers \(x \neq \frac{3}{2}, -2 \). Roots: \( x = 0, 1 \). V.A.s \(x = \frac{3}{2} \) and \( x = -2\).
    6. Domain: all real numbers \( x \neq \pm 3\). Roots: \( x = 0\). V.A.s \(x = -3\) and \(x = 3\).
    7. Domain: all real numbers \(x \neq 2 \). Roots: \( x = 1\). V.A. \( x = 2 \).
    Graphs of Rational Functions

    By looking at the graph, identify any roots, vertical asymptotes, and horizontal asymptotes of the rational function. Then match each graph to its potential function.

    11.png 12.png 13.png 14.png
    1. 2. 3. 4.

    A. \( f(x) = \dfrac{x^2+1}{(x+1)^2(x-1)} \)

    B. \( f(x) = \dfrac{x^3-4x}{3x^2+2} \)

    C. \( f(x) = \dfrac{ 2x+4}{x+5} \)

    D. \( f(x) = \dfrac{ 2x}{x^2-9} \)

    Answer

    1. No V.A. or H.A., roots at \( x = -2, 0, 2\). Goes with B.

    2. Root at \(x = 0\). V.A.s \( x = -3\) and \(x = 3\). H.A. \(y = 0\). Goes with D.

    3. Root at \(x = -2\). V.A. \(x = -5\). H.A. \(y = 2\). Goes with C.

    4. No roots. V.A.s \(x = -1\) and \(x = 1\). H.A. \(y = 0\). Goes with A.

    Manipulating Rational Functions

    If the degree of the numerator is greater than or equal to the degree of the denominator, write \( \dfrac{ p(x)}{d(x)} \) in the form \( q(x) + \dfrac{r(x)}{d(x)} \). If not, use partial fractions to write as a sum of terms with linear factors in the denominators.

    1. \( g(x) = \dfrac{ 2x^2 - 3x}{x-4} \)

    2. \( p(x) = \dfrac{3x^2 - 5x + 2}{x^2 - 4x + 4} \)

    3. \( r(x) = \dfrac{ 2x}{x^2-9} \)

    4. \( q(x) = \dfrac{2x^3 - 2x^2+18}{2x^2+x-6} \)

    5. \( f(x) = \dfrac{6 x^2}{(x-2)(x^2 - 1)} \)

    6. \( h(x) = \dfrac{ 2x + 1}{x^2 -5x + 6} \)

    Answer

    1. \( 2x+5 + \dfrac{20}{x-4} \)

    2. \( 3 + \dfrac{7x-10}{x^2-4x+4}\)

    3. \( \dfrac{1}{x+3} + \dfrac{1}{x-3} \)

    4. \( x-\frac{3}{2} + \dfrac{ \frac{15}{2}x + 9}{2x^2+x-6} \)

    5. \( -\dfrac{3}{x-1}+\dfrac{1}{x+1} + \dfrac{8}{x-2} \)

    6. \( \dfrac{7}{x-3} - \dfrac{5}{x-2} \)

    Polynomial and Rational Inequalities

    Solve the inequalities.

    1. \( x^3 - 2x^2 - 3x \geq 0 \)

    2. \( x^3 < 9x \)

    3. \( \dfrac{x}{x^2-1} + \dfrac{1}{x+1} \leq 0 \)

    4. \( \dfrac{1}{x} > \dfrac{2}{x-1} \)

    Answer
    1. \( [-1, 0] \cup [3, \infty) \)
    2. ALERT: you can't just divide both sides by \(x\) because \(x\) can take negative and positive values, so you won't know whether to flip the inequality sign! \( (-\infty, -3)\cup (0,3) \)
    3. \( (-\infty, -1) \cup \left[ \frac{1}{2}, 1\right) \)
    4. \( \left(-\infty, -1 \right) \cup (0,1) \)
    Holes

    If a function is defined by a rational expression that is not fully reduced, for example,

    \[ r(x) = \frac{ x^2 - 2x + 1}{x^2 +2x - 3} = \frac{ (x-1)(x-1)}{(x-1)(x+3)} \notag\]

    then its domain does not include the problem value \(x = 1\) that causes the denominator to be zero (and of course, we can't allow \(x = -3\) either). However, this function doesn't have a vertical asymptote at \(x = 1\) like it does at \(x = -3\)! For all purposes besides the actual problem value, the function will behave exactly like the function defined by the simplified rational expression,

    \[ f(x) = \frac{ x-1}{x+3} \notag \]

    Both are graphed below. The graph of \(r(x)\) has a hole (or removable discontinuity) at \(x = 1\), but otherwise it looks just like the graph of \(f(x)\).

    hole.png f.png

    Now, for the functions given, identify their domain issues, and indicate whether each problem value yields a hole or a vertical asymptote. Find the fully reduced rational function \(f \) whose graph will match (apart from holes).

    1. \( r(x) = \dfrac{ x^2 + 6x + 5}{2x^2+3x+1} \)

    2. \( r(x) = \dfrac{ x^3 - x}{2x^2 + 4x} \)

    3. \( r(x) = \dfrac{ (x+1)(x-2)(x+3)}{ (x-1)(x+1)(x-2)(x+2) } \)

    Answer

    1. Domain: \( x \neq -\frac{1}{2}, -1\). Vertical asymptote \(x = -\frac{1}{2} \) and hole at \(x = -1\). \(f(x) = \dfrac{ x+5}{2x+1} \).

    2. Domain: \(x \neq 0, -2\). Vertical asymptote \(x = -2\), hole at \(x = 0\). \( f(x) = \dfrac{ x^2 - 1}{2(x+2)} \).

    3. Domain: \(x \neq \pm 1, \pm 2\). Vertical asymptotes \( x = 1\) and \(x = -2\). Holes at \(x = -1, 2 \). \( f(x) = \dfrac{ x+3}{(x-1)(x+2)} \).


    6.1E Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?