Skip to main content
Mathematics LibreTexts

6.2E Exercises

  • Page ID
    155298
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Finding Limits From Graphs

    By looking at the graph of \(f(x)\) below, find the indicated limits.

    limitsgraph.png

    \[ \lim_{x \rightarrow -5} f(x), \quad \lim_{x \rightarrow 0^-} f(x), \quad \lim_{x \rightarrow 0^+} f(x), \quad \lim_{x \rightarrow 0} f(x), \notag \]

    \[ \lim_{x \rightarrow 4^-} f(x), \quad \lim_{x \rightarrow 4^+} f(x), \quad \lim_{x \rightarrow 4} f(x), \quad \lim_{x \rightarrow -\infty} f(x) \notag\]

    Answer
    • \( \lim_{x \rightarrow -5} f(x) = 4 \)
    • \( \lim_{x \rightarrow 0^-} f(x) = 1 \)
    • \( \lim_{x \rightarrow 0^+} f(x) = -2 \)
    • \(\lim_{x \rightarrow 0} f(x) \) DNE.
    • \( \lim_{x \rightarrow 4^-} f(x) = 4 \)
    • \(\lim_{x \rightarrow 4^+} f(x) = 4 \)
    • \( \lim_{x \rightarrow 4} f(x) = 4 \)
    • \( \lim_{x \rightarrow -\infty} f(x) = \infty \)
    Identifying Asymptotes From Graphs

    By looking at the graphs of rational functions below, identify any vertical, horizontal, or slant asymptotes.

    1. 2.
    aa.png b.png
    3. 4.
    c.png d.png
    Answer
    1. V.A. \(x = 0\), Slant \(y = 2x\).
    2. V.A. \( x = 1\), H.A. \(y = -2\).
    3. V.A.s \( x = -1, x = 2\), H.A. \(y = 3 \).
    4. V.A. \( x = 1\), Slant \( y = x+1 \).
    Algebraically Finding Vertical Asymptotes

    Find any vertical asymptotes of the rational functions by analyzing appropriate limits.

    1. \( f(x) = \dfrac{ 1}{x^2 - 5x + 6 } \)

    2. \( f(x) = \dfrac{ x}{x+2} \)

    3. \( f(x) = \dfrac{-2x^2+4x-1}{(x-1)^2} \)

    4. \( f(x) = \dfrac{ (x+2)(x+3)(x-3)}{(x+2)(x-2)(x+1)} \)

    5. \( f(x) = \dfrac{ 2x^5+x^2}{x^4} \)

    Answer

    HINT: If you can't get started, the steps are 1) identify domain issues and 2) analyze the limits as \(x\) approaches those locations to see if any of them have a limit of \(\pm \infty\). Go do them and come back to check your answers.

    1. \( x = 2\) and \(x = 3\) are V.A.s.
    2. \( x = -2 \) is a V.A.
    3. \( x = 1\) is a V.A. (As \(x \rightarrow 1\), the numerator heads toward 1 while the denominator heads toward 0, making the fraction blow up.)
    4. \( x = -1 \) and \( x= 2\) are V.A.s. (When you consider \(x \rightarrow -2\), notice that by cancelling in the top and bottom as possible, the fraction's value heads toward \(-\frac{5}{4} \), not \(\pm \infty\).)
    5. \( x = 0 \) is a V.A. (Write \( \dfrac{ 2x^5 + x^2}{x^4} \) as \( 2x + \frac{1}{x^2} \). As \(x \rightarrow 0\), the first term goes away but the second term blows up forever.)
    Algebraically Finding Horizontal Asymptotes

    Find any horizontal asymptotes of the rational functions by analyzing appropriate limits.

    1. \( f(x) = \dfrac{ 1}{x^2 - 5x + 6 } \)

    2. \( f(x) = \dfrac{ x}{x+2} \)

    3. \( f(x) = \dfrac{-2x^2+4x-1}{(x-1)^2} \)

    4. \( f(x) = \dfrac{ (x+2)(x+3)(x-3)}{(x+2)(x-2)(x+1)} \)

    5. \( f(x) = \dfrac{ 2x^5+x^2}{x^4} \)

    Answer

    HINT: If you can't get started, the limits you need to analyze are as \(x \rightarrow \infty\) and/or \(x \rightarrow -\infty\). Remember the trick of dividing top and bottom by the highest power of \(x\) from the denominator.

    1. H.A. \( y = 0\).
    2. H.A. \( y = 1\).
    3. H.A. \( y = -2\).
    4. H.A. \( y = 1\).
    5. No H.A.
    Algebraically Finding Slant Asymptotes

    Find any slant asymptotes of the rational functions by analyzing appropriate limits.

    1. \( f(x) = \dfrac{x^2+1}{x} \)

    2. \( f(x) = \dfrac{ 2x^5+x^2}{x^4} \)

    2. \( f(x) = \dfrac{ 3x^3+2x^2-x+1}{x^2+1} \)

    Answer

    HINT: The question is, does the function behave like a linear function as \(x \rightarrow \pm \infty\)? Use polynomial long division (or splitting the fraction and cancelling) to see.

    1. \( y = x \)
    2. \( y = 2x \)
    3. \( y = 3x + 2\)
    Limit Application

    The zombie apocalypse has begun (womp womp). Currently, the spread of the outbreak is modeled by the function \(P(d) = \frac{1}{2}d^3 - d + 1000 \), giving the number of zombies on day \(d\) after the outbreak started. If nothing changes and time goes on with this growth function unchecked, will the number of zombies (a) decrease and go extinct, (b) level out at a certain number, or (c) grow until they take over the Earth?

    Answer

    If time is going on forever, we're looking at sending \( d\rightarrow \infty\). As \(d\) grows, the term \(\frac{1}{2}d^3\) will grow very quickly. Even though the \( -d\) term is subtracting off some zombies, it can't offset the quick growth of the cubic term! Think about it...

    \[ \frac{1}{2}2^3 - 2 = 2, \quad ... \quad \frac{1}{2}10^3 - 10 = 490, \quad ... \quad \frac{1}{2} 100^3 - 100 = 499,900, \quad ... \notag \]

    Believe me? So as time goes on, the zombies take over the Earth. (rip)


    6.2E Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?