Skip to main content
Mathematics LibreTexts

7.1E Exercises

  • Page ID
    155685
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    (Note: Most of these problems come from Section 6.3E, except for the transformation and sketching material.)

    Definition True/False

    Answer True/False. If False, justify or find the error.

    1. The function \( f(x) = x^{\frac{1}{2} }\) is exponential with base \( \frac{1}{2} \).
    2. The function \( f(x) = \left( \frac{1}{2} \right)^x \) is exponential with base \( \frac{1}{2} \).
    3. The expression \( \left( \frac{1}{2} \right)^x \) is equivalent to the expression \( \frac{1}{2^x} \).
    4. The function \( f(x) = 5^x \) is exponential with base 5.
    5. The function \( f(x) = 5^{-x} \) is exponential with base 5.
    6. The function \( f(x) = 5^{-x} \) is exponential with base \( \frac{1}{5} \).
    7. The function \( f(x) = 3^x\) is increasing.
    8. The function \( f(x) = \left(\frac{1}{3}\right)^x \) is increasing.
    9. The function \( f(x) = \left(\frac{1}{3}\right)^x \) is decreasing.
    10. For \( f(x) = 3^x\), we have \(f(0) = 3 \).
    11. For \( f(x) = 3^x\), we have \(f(0) = 1 \).
    12. For \( f(x) = 3^x\), we have \(f(1) = 3 \).
    13. The function \( f(x) = e^x \) can take negative values. That is, there exists some \(x\) such that \(f(x) < 0 \).
    14. The function \( f(x) = 3^x\) can take negative values.
    Answer
    1. F, the variable isn't in the exponent.
    2. T
    3. T
    4. T
    5. F, rewrite \( 5^{-x} \) as \( \left( \frac{1}{5} \right)^x \) to see the base.
    6. T
    7. T
    8. F, when the base is less than 1, the function is decreasing (downhill behavior).
    9. T
    10. F, \( f(0) = 3^0 = 1 \).
    11. T
    12. T
    13. F, exponential functions like this never take negative values (stay above the \(x\)-axis).
    14. F, same reason.
    Graphs True/False

    Answer True/False. If False, justify or find the error.

    1. The graph of \(f(x) = a^x\) passes through \( (0,1)\) for any base with \(a > 0\) and \(a \neq 1\).
    2. The graph of \( f(x) = 2^x\) is increasing.
    3. The graph of \( f(x) = \left( \frac{4}{5} \right)^x \) is decreasing.
    4. The graph of \( f(x) = \left( \frac{5}{4} \right)^x \) is decreasing.
    5. As \(x \rightarrow \infty\), the graph of \( f(x) = 5^x\) is steeper (faster growing) than the graph of \(g(x) = 10^x \).
    6. As \(x \rightarrow \infty\), the graph of \( g(x) = 10^x\) is steeper (faster growing) than the graph of \( f(x) = 5^x\).
    7. The graph of \( f(x) = e^x\) is increasing.
    8. The graph of \(f(x) = e^x \) is steeper than the graph of \(g(x) = 3^x \), for \(x > 0\).
    9. The graph of \( f(x) = 6^x \) passes through \( (1,6) \).
    10. The graph of \( f(x) = 6^x \) passes through \( \left(-1, \frac{1}{6} \right) \).
    11. The graph of \(f(x) = 6^x \) passes through \( (6, 1) \).
    12. The graph of \( f(x) = e^x\) passes below the \(x\)-axis.
    13. The graph of \(f(x) = a^x \) passes through \( (1,a)\) for any base \(a\).
    14. The graph of \( f(x) = 5^{-x} \) is the reflection across the \(y\)-axis of the graph of \( g(x) = 5^x\).
    15. The graph of \( f(x) = \left( \frac{1}{7} \right)^x \) is the reflection across the \(y\)-axis of the graph of \( g(x) = 7^x \).
    Answer
    1. T
    2. T
    3. T
    4. F, the base \( \frac{5}{4} > 1 \) so it's increasing.
    5. F, bigger base gives faster growth.
    6. T
    7. T
    8. F, \(e \approx 2.71...\) is less than 3, so \(g\) has the larger base and thus faster growth.
    9. T
    10. T
    11. F, \( f(6) = 6^6 \).
    12. F, as mentioned, these exponential functions are always positive.
    13. T
    14. T
    15. T
    Matching Graphs

    By analyzing signal points like \( (1,a)\) and \( \left(-1, \frac{1}{a}\right) \) and using your knowledge of exponential function graphs, match the graphs to their functions.

    z1.png z4.png z2.png z3.png
    1. 2. 3. 4.
    \( f(x) = e^x\) \( g(x) = \left(\frac{1}{3}\right)^x \) \( h(x) = 7^x\) \( p(x) = 4^{-x} \)
    Answer
    1. \(h\)
    2. \(p\)
    3. \(f\)
    4. \( g\)
    Matching Graphs With Transformations

    Match the graphs to their functions.

    h.png i.png j.png k.png
    1. 2. 3. 4.
    \( f(x) = 2e^x\) \(g(x) = 10^x-10 \) \( h(x) = \left(\frac{1}{2}\right)^x + 1 \) \( p(x) = -2^x\)
    Answer
    1. \(h\)
    2. \(g\)
    3. \( f\)
    4. \(p\)
    Sketching Graphs

    Sketch the graphs of the exponential functions.

    1. \( f(x) = 10^x\)
    2. \(f(x) = (0.25)^x \)
    3. \( f(x) = 2^x \)
    4. \( f(x) = 2^{x+1} \)
    5. \( f(x) = -3^x\)
    6. \( f(x) = -3^x + 1 \)
    Answer

    1.

    l.png

    2.

    m.png

    3.

    n.png

    4.

    o.png

    5.

    p.png

    6.

    q.png

    Working With Exponential Functions
    1. (Without calculator) Fill in the table of values for the function \( f(x) = 2^x \).
      x \( f(x) \) x \( f(x)\)
      1   0  
      2   -1  
      3   -2  
    2. (Without calculator) Fill in the table of values for the function \( f(x) = \left(\frac{2}{3}\right)^x\).
      x \( f(x) \) x \( f(x)\)
      1   0  
      2   -1  
      3   -2  
    3. (Without calculator) Fill in the table of values for the function \( f(x) = 5^{-x} \).
      x \( f(x) \) x \( f(x)\)
      1   0  
      2   -1  
      3   -2  
    4. For \( f(x) = 5^x \), what should \(x\) be to get \(f(x) = 5\)? What should \(x\) be to get \(f(x) = 25\)?
    5. For \( f(x) = 5^x\), what should \(x\) be to get \( f(x) = \frac{1}{5} \)? What should \(x\) be to get \( f(x) = 1\)?
    6. For \(f(x) = 4^x\), what should \(x\) be to get \(f(x) = 2\)?
    7. For \(f(x) = 8^x\), what should \(x\) be to get \(f(x) = 2\)?
    8. If \(f(x) = 2^x\) and \(g(x) = 4^x\), is there an \(x\)-value for which \(f(x) = g(x)\)?
    9. Is there an \(x\)-value such that \( e^x = -2 \)?
    10. Using technology (calculator or WolframAlpha, for example), fill in the table of values for the function \(f(x) = (1.2)^x \).
      x \( f(x) \) x \( f(x) \)
      -2   0  
      -1   3.25  
      -0.5   10  
    Answer
    1. x \( f(x) \) x \( f(x)\)
      1 2 0 1
      2 4 -1 \( \frac{1}{2}\)
      3 8 -2 \( \frac{1}{4} \)
    2. x \( f(x) \) x \( f(x)\)
      1 \( \frac{2}{3} \) 0 1
      2 \( \frac{4}{9} \) -1 \( \frac{ 3}{2} \)
      3 \( \frac{8}{27} \) -2 \( \frac{9}{4} \)
    3. x \( f(x) \) x \( f(x)\)
      1 \( \frac{1}{5} \) 0 1
      2 \( \frac{1}{25} \) -1 5
      3 \( \frac{1}{125} \) -2 25
    4. For \(f(x) = 5\), \(x\) should be 2. For \(f(x) = 25\), \(x \) should be 2.
    5. For \( f(x) = \frac{1}{5} \), \(x\) should be \(-1\). For \( f(x) = 1\), \(x\) should be 0.
    6. We want \(x\) such that \( f(x) = 4^x = 2 \). What kind of power should 4 be raised to to get out...its square root? That's right, \(x = \frac{1}{2} \). Check: \( f(1/2) = 4^{\frac{1}{2}} = \sqrt{4} = 2 \).
    7. Similar reasoning, \(x = \frac{1}{3} \).
    8. Yes, both pass through \( (0,1)\). Aka, if \(x = 0\), then \(f(x) = g(x) = 1\).
    9. No, there is no possible input that will make \(f(x) = e^x\) pass below the \(x\)-axis into negative function values.
    10. x \( f(x) \) x \( f(x) \)
      -2 0.694444 0 1
      -1 0.833333 3.25 1.80859
      -0.5 0.912871 10 6.19174

    7.1E Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?