Skip to main content
Mathematics LibreTexts

Chapter 15: Sequences of Functions

  • Page ID
    211985
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

     

    Suppose that \(f_n: \mathbb{T}  \to\mathbb{R}  \), \(n\in \mathbb{N}   \), \(S\subset \mathbb{T}   \).

    Definition:

    We say that the sequence \(\{f_n\}_{n\in \mathbb{N}}  \) converges pointwise, i.e., at each point, to a function \(f  \) defined on \(S  \)  if
    \[\lim_{n  \to\infty}f_n(t)=f(t)  \quad\mbox{for all}\quad t\in S.    \notag\]
    We often write \(\lim_{n  \to\infty}f_n=f  \) pointwise on \(S  \)  or \(f_n  \to f  \) pointwise on \(S   \).

     

    Example

    Let \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}\cup\{0\}   \). Consider
    \[f_n(t)=t^2,\quad t\in[0,1].    \notag\]
    We have
    \[\lim_{n  \to\infty}f_n(t)=\lim_{n  \to\infty}t^n
       =\begin{cases}
       0 &  \quad\mbox{for}\quad t\in[0,1)  \\ \\
       1 &  \quad\mbox{for}\quad t=1.
       \end{cases}    \notag\]
    If
    \[f(t)=\begin{cases}
            0 &  \quad\mbox{for}\quad t\in[0,1)  \\ \\
            1 &  \quad\mbox{for}\quad t=1,
            \end{cases}    \notag\]
    then \(f_n  \to f  \) pointwise on \([0,1]   \).

     

    Example

    Let \( \mathbb{T}=2^{ \mathbb{N}_0}   \). If
    \[f_n(t)=t\left(1+e^{-nt}\right),    \notag\]
    then
    \[\lim_{n  \to\infty}f_n(t)=\lim_{n  \to\infty}t\left(1+e^{-nt}\right)=t.    \notag\]
    If we set \(f(t)=t   \), then \(f_n  \to f  \) pointwise on \( \mathbb{T}   \).

    Example

    If \(f_n(t)=\frac{n+1}{n+t^2}   \), then
    \[\lim_{n  \to\infty}f_n(t)=\lim_{n  \to\infty}\frac{n+1}{n+t^2}=1.    \notag\]
    If \(f(t)=1   \), \(t\in \mathbb{T}   \), then \(f_n  \to f  \) pointwise on \( \mathbb{T}   \).

     

    Exercise

    Let
    \[f_n(t)=\frac{nt^2}{n+t},\quad f(t)=t^2.    \notag\]
    Prove that \(f_n  \to f  \) pointwise on \( \mathbb{T}   \).

     

    Definition:

    We say that the sequence \(\{f_n\}_{n\in \mathbb{N}}  \) converges uniformly on \(S \)  to a function \(f  \) defined on \(S  \) if for every \(\varepsilon>0   \), there exists \(N\in \mathbb{N}  \) such that
    \[|f_n(t)-f(t)|<\varepsilon  \quad\mbox{for all}\quad n>N  \quad\mbox{and all}\quad t\in S.    \notag\]

     

    Example

    Let \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}\cup\{0\}   \). Consider
    \[f_n(t)=t^n,\quad 0\leq t\leq a,\quad 0<a<1.    \notag\]
    Note that
    \[\lim_{n  \to\infty}f_n(t)=\lim_{n  \to\infty}t^n=0  \quad\mbox{for all}\quad t\in \mathbb{T}.    \notag\]
    Let \(\varepsilon>0  \) be arbitrarily chosen. We choose \(N\in \mathbb{N}  \) such that
    \[N>\frac{\log\varepsilon}{\log a}.    \notag\]
    Hence, \(a^N<\varepsilon   \).
    Then, for every \(n>N   \), we have
    \[a^n\leq a^N<\varepsilon    \notag\]
    and
    \[|t^n-0|=t^n\leq a^n<\varepsilon.    \notag\]
    Therefore, \(f_n  \to 0  \) uniformly on \([0,a]   \).

     

    Example

    Let \( \mathbb{T}=2^{ \mathbb{N}_0}   \). Consider
    \[f_n(t)=\sqrt{t^2+\frac{1}{n^2}}.    \notag\]
    If we take \(f(t)=t  \) and let \(\varepsilon>0  \) be arbitrarily chosen, then
     \[ \begin{aligned}
       |f_n(t)-f(t)|
       &=& \left|\sqrt{t^2+\frac{1}{n^2}}-t\right|  \\ \\
       &=& \frac{\left|\left(\sqrt{t^2+\frac{1}{n^2}}-t\right)
           \left(\sqrt{t^2+\frac{1}{n^2}}+t\right)\right|}
           {\sqrt{t^2+\frac{1}{n^2}}+t}  \\ \\
       &=& \frac{t^2+\frac{1}{n^2}-t^2}{\sqrt{t^2+\frac{1}{n^2}}+t}  \\ \\
       &=& \frac{1}{n^2\left(\sqrt{t^2+\frac{1}{n^2}}+t\right)}  \\ \\
       &\leq& \frac{1}{n^2\frac{1}{n}}  \\ \\
       &=& \frac{1}{n}.
       \end{aligned}    \notag\]
    If we take \(N=\frac{1}{\varepsilon}   \), then, for every \(n>N   \), we have
     \[frac{1}{n}<\frac{1}{N}=\varepsilon  \quad\mbox{and}\quad
       |f_n(t)-f(t)|<\varepsilon  \quad\mbox{for any}\quad t\in \mathbb{T}.    \notag \]
    Hence, \(\{f_n\}_{n\in \mathbb{N}}  \)  is uniformly convergent to \(f  \)  on \( \mathbb{T}   \).

     

    Example

    Let \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}\cup\{0\}   \). Consider
    \[f_n(t)=\frac{nt}{2+n^3t^3},\quad t\in \mathbb{T}.    \notag\]
    If \(f(t)=0   \), then \(f_n  \to f  \) pointwise on \( \mathbb{T}   \). Assume that \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(f  \) on \( \mathbb{T}   \). We take \(0<\varepsilon<\frac{1}{3}   \). Then there exists \(N=N(\varepsilon)  \) such that for every \(n>N   \), we have
    \[|f_n(t)|<\varepsilon \quad  \mbox{for any}\quad  t\in \mathbb{T}.    \notag\]
    In particular, when \(n>N  \) and \(t=\frac{1}{n}   \), we get
    \[\left|f_n\left(\frac{1}{n}\right)\right|<\varepsilon,    \notag\]
    which is a contradiction because \(f_n\left(\frac{1}{n}\right)=\frac{1}{3}   \). Therefore, \(\left\{f_n\right\}_{n\in \mathbb{N}}  \) is not uniformly convergent to \(f  \) on \( \mathbb{T}   \).

     

     

    Exercise

    Let \( \mathbb{T}=\left\{\frac{1}{n}: n\in \mathbb{N}\right\}\cup\{0\}   \). Check if the following sequences are uniformly convergent on \( \mathbb{T}   \).

    1. \(f_n(t)=e^{-(t-3n)^2}   \),

    2. \(f_n(t)=\frac{t}{4+2n^2t^2}   \),

    3. \(f_n(t)=\frac{1}{2+3nt}   \).
     

    Answer

    3. uniformly convergent to \(0  \) on \( \mathbb{T}   \),

    2. uniformly convergent to \(0  \) on \( \mathbb{T}   \),

    3. not uniformly convergent to \(0  \) on \( \mathbb{T}   \).
     

     

     

    Theorem

    If \(\left\{f_n\right\}_{n\in \mathbb{N}}  \) converges pointwise to \(f  \) on \(D\subset \mathbb{T}   \), then \(\left\{f_n\right\}_{n\in \mathbb{N}}  \) converges uniformly to \(f  \) on \(D \)  if and only if
    \begin{equation}\label{191}
       \lim_{n  \to\infty}\sup_{t\in D}|f_n(t)-f(t)|=0.
    \end{equation}

     

    Proof


    1.  Supose that \(\left\{f_n\right\}_{n\in \mathbb{N}}  \) converges uniformly to \(f  \) on \(D   \). Then, for every \(\varepsilon>0   \), there exists \(N=N(\varepsilon) \)  so that \(n>N  \) implies
    \[|f_n(t)-f(t)|<\varepsilon  \quad \mbox{for any}\quad  t\in D.    \notag\]
    Hence,
    \[\sup_{t\in D}|f_n(t)-f(t)|<\varepsilon  \quad\mbox{for any}\quad n>N.    \notag\]

    2.  Suppose that \(\left\{f_n\right\}_{n\in \mathbb{N}}  \) converges pointwise to \(f  \) on \(D  \) and \eqref{191} holds. Then, for every \(\varepsilon>0   \), there exists \(N=N(\varepsilon)  \) so that \(n>N  \) implies
    \[\sup_{t\in D}|f_n(t)-f(t)|<\varepsilon.    \notag\]
    Hence, for any \(n>N   \), we have
    \[|f_n(t)-f(t)|<\varepsilon  \quad\mbox{for any}\quad t\in D.    \notag\]

    The proof is complete.
     

     

    Example

    Let \( \mathbb{T}=2^{ \mathbb{N}_0}   \), \(f_n(t)=\frac{1}{n+t^2}  \) and \(f(t)=0   \), \(t\in \mathbb{T}   \). We have that \(f_n  \to f  \) pointwise on \( \mathbb{T}   \). Also,
    \[\sup_{t\in \mathbb{T}}|f_n(t)-f(t)|
       =\sup_{t\in \mathbb{T}}\frac{1}{n+t^2}=\frac{1}{n+1}  \to 0  \quad\mbox{as}\quad n  \to\infty.    \notag\]
    Hence, it follows that \(\left\{f_n\right\}_{n\in \mathbb{N}} \)  converges uniformly to \(f  \) on \( \mathbb{T}   \).

     

    Example

    Let \( \mathbb{T}= \mathbb{N}   \), \(f_n(t)=\frac{nt}{nt+1}   \), \(f(t)=1   \), \(t\in \mathbb{T}   \). We have that \(f_n  \to 1  \) pointwise on \( \mathbb{T}   \). Also,
     \[ \begin{aligned}
       |f_n(t)-f(t)|
       &=& \left|\frac{nt}{nt+1}-1\right|  \\ \\
       &=& \left|-\frac{1}{nt+1}\right|  \\ \\
       &=& \frac{1}{nt+1},  \\ \\
       \sup_{t\in \mathbb{T}}|f_n(t)-f(t)|
       &=& \sup_{t\in \mathbb{T}}\frac{1}{nt+1}  \\ \\
       &=& \frac{1}{n+1}  \to 0 \quad \mbox{as}\quad n  \to\infty.
      \end{aligned}   \notag\]
    Hence, it follows that \(\{f_n\}_{n\in \mathbb{N}}  \) converges uniformly to \(f  \) on \( \mathbb{T}   \).

     

    Example

    Let \( \mathbb{T}= \mathbb{Z}   \). We will investigate for uniform convergence of the sequence \(\left\{f_n(t)=\frac{n+1}{n+t^2}\right\}_{n\in \mathbb{N}} \)  on \(D_2=[-1,1]  \) and \(D_2=[1,\infty)   \). Let \(f(t)=1   \). Note that \(f_n  \to f  \) pointwise on \( \mathbb{Z}   \). Moreover,
    \[|f_n(t)-f(t)|
       =\left|\frac{n+1}{n+t^2}-1\right|=\left|\frac{1-t^2}{n+t^2}\right|.    \notag\]

    1. If \(t\in D_1   \), then
     \[ \begin{aligned}
       |f_n(t)-f(t)|
       &=& \frac{1-t^2}{n+t^2},  \\ \\
       \left(\frac{1-t^2}{n+t^2}\right) ^\Delta
       &=& \frac{(1-t^2) ^\Delta(n+t^2)-(1-t^2)(n+t^2) ^\Delta}
                {(n+(\sigma(t))^2)(n+t^2)}  \\ \\
       &=& \frac{-(\sigma(t)+t)(n+t^2)-(1-t^2)(\sigma(t)+t)}
                {\left(n+(t+1)^2\right)\left(n+t^2\right)}  \\ \\
       &=& -\frac{(n+1)(2t+1)}{\left(n+(t+1)^2\right)(n+t^2)}  \\ \\
       &\leq& 0  \quad\mbox{if}\quad t\geq-\frac{1}{2},  \\ \\
       \left(\frac{1-t^2}{n+t^2}\right)  ^\nabla
       &=& \frac{(1-t^2)  ^\nabla(n+t^2)-(1-t^2)(n+t^2)  ^\nabla}{(n+(\mathbb{R}ho(t))^2)(n+t^2)}  \\ \\
       &=& \frac{-(\mathbb{R}ho(t)+t)(n+t^2)-(1-t^2)(\mathbb{R}ho(t)+t)}
                {\left(n+(t+1)^2\right)\left(n+t^2\right)}  \\ \\
       &=& -\frac{(n+1)(2t-1)}{\left(n+(t-1)^2\right)(n+t^2)}  \\ \\
       &\geq& 0  \quad \mbox{if}\quad t\geq\frac{1}{2}.
      \end{aligned}   \notag\]
    Therefore, the function \(\frac{1-t^2}{n+t^2}  \) has a maximum at \(t=0   \). Note that
    \[\frac{1-t^2}{n+t^2}\Bigl|_{t=0}=\frac{1}{n}  \to 0  \quad\mbox{as}\quad n  \to \infty.    \notag\]
    Hence, it follows that \(\{f_n\}_{n\in \mathbb{N}}  \) converges uniformly to \(f  \) on \(D_1   \).

    2.  If \(t\in D_2   \), then
    \[|f_n(t)-f(t)|=\frac{t^2-1}{n+t^2}.    \notag\]
    Assume that \(\{f_n\}_{n\in \mathbb{N}}  \) converges uniformly to \(f  \) on \(D_2   \). Then, for \(0<\varepsilon<\frac{1}{2}   \), there existss \(N=N(\varepsilon)  \) so that \(n>N  \) implies
    \[\frac{t^2-1}{n+t^2}<\varepsilon  \quad\mbox{for any}\quad t\in D_2.    \notag\]
    We take \(t=n+2\in D_2   \). Then
    \[\frac{(n+2)^2-1}{n+(n+2)^2}<\frac{1}{2},    \notag\]
    so
    \[\frac{n^2+4n+3}{2n^2+4n+4}<\frac{1}{2},    \notag\]
    so
    \[n^2+4n+3<n^2+2n+2,    \notag\]
    so
    \[2n+1<0,    \notag\]
    which is a contradiction. Therefore, \(\{f_n\}_{n\in \mathbb{N}}  \) does not converge uniformly to \(f  \) on \(D_2   \).

    Exercise

    Let
    \[ \mathbb{T}=\{0\}\cup\left\{\frac{1}{n}:\; n\in \mathbb{N}\right\}\cup 2^{ \mathbb{N}_0}.    \notag\]
    Investigate the sequence
    \[\left\{f_n(t)=\frac{n+t}{nt+1}\right\}_{n\in \mathbb{N}}    \notag\]
    for uniform convergence on \(D_1=[0,1]  \) and \(D_2=2^{ \mathbb{N}_0}   \).
     

    Answer


    The sequence is not uniformly convergent on \(D_1  \) and it is uniformly convergent on \(D_2   \).

    Example

    If the function sequence \(\{f_n\}_{n\in \mathbb{N}}  \) is pointwise convergent to \(f  \) on \(D\subset \mathbb{T}   \), then \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(f  \) on \(D \) if and only if for an arbitrary sequence \(\{t_n\}_{n\in \mathbb{N}}   \), \(t_n\in D   \), we have
    \begin{equation}\label{192}
       \lim_{n  \to\infty}\left(f_n(t_n)-f(t_n)\right)=0.
    \end{equation}
     

    Proof


    1. Suppose that \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent on \(D   \). Then, we have
    \[\sup_{t\in D}|f_n(t)-f(t)|  \to 0  \quad\mbox{as}\quad n  \to\infty.    \notag\]
    Hence, for any sequence \(\{t_n\}_{n\in \mathbb{N}}   \), \(t_n\in D   \), we have
    \[|f_n(t_n)-f(t_n)|\leq\sup_{t\in D}|f_n(t)-f(t)|  \to 0  \quad\mbox{as}\quad n  \to\infty,    \notag\]
    i.e., \eqref{192} holds.
     

    2.  Assume that for any sequence \(\{t_n\}_{n\in \mathbb{N}}   \), \(t_n\in D   \), \eqref{192} holds and the sequence \(\{f_n\}_{n\in \mathbb{N}} \)  does not converge uniformly to \(f  \) on \(D   \). Hence, there exists \(\varepsilon_0>0  \) such that for any \(N>0   \), there exist \(n>N  \) and \(t\in D  \) so that
     \[|f_n(t)-f(t)|\geq\varepsilon_0.     \notag\]
    For \(N_1=1   \), there exist \(n_1>1  \) and \(t_{n_1}\in D  \) such that
     \[|f_{n_1}(t_{n_1})-f(t_{n_1})|\geq\varepsilon_0.     \notag\]
    For \(N_2=n_1   \), there exist \(n_2>n_1  \) and \(t_{n_2}\in D  \) such that
     \[|f_{n_2}(t_{n_2})-f(t_{n_2})|\geq\varepsilon_0,     \notag\]
    and so on. Thus, we get a sequence \(\{t_{n_k}\}_{k\in \mathbb{N}}   \), \(t_{n_k}\in D   \), such that
     \[|f_{n_k}(t_{n_k})-f(t_{n_k})|\geq\varepsilon_0,     \notag\]
    which leads to a contradiction due to \eqref{192}.

    The proof is complete.

     

    Example

    Consider \(f_n(t)=nt(1-t)^n  \) on \(D=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}\cup\{0\}   \). We have that \(\{f_n\}_{n\in \mathbb{N}}  \) is pointwise convergent to \(0  \) on \(D   \). Suppose that \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(0  \) on \(D   \). Then, applying Theorem \mathbb{R}ef{theorem190} for \(t_n=\frac{1}{n}   \), we have
     \[f_n\left(\frac{1}{n}\right)=\left(1-\frac{1}{n}\right)^n \mathbb{N}ot  \to 0,     \notag\]
    which is a contradiction. Therefore, \(\{f_n\}_{n\in \mathbb{N}}  \) is not uniformly convergent to \(0  \) on \(D   \).

     

    Example

    Consider \(f_n(t)=\frac{1}{1+nt} \)  on \(D=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}\cup\{0\}   \). We have that \(\{f_n\}_{n\in \mathbb{N}}  \) is pointwise convergent to \(0  \) on \(D   \). Assume that \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(0  \) on \(D   \). Then, using Theorem \mathbb{R}ef{theorem190} for \(t_n=\frac{1}{n}   \), we have
     \[f_n\left(\frac{1}{n}\right)=\frac{1}{2} \mathbb{N}ot  \to 0,     \notag\]
    which is a contradiction. Therefore, \(\{f_n\}_{n\in \mathbb{N}}  \) is not uniformly convergent to \(0  \) on \(D   \).

     

    Example

    Consider \(f_n(t)=1-(1-t^2)^n  \) on \(D=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}\cup\{0\}   \). We have that \(\{f_n\}_{n\in \mathbb{N}}  \) is pointwise convergent to \(1  \) on \(D   \). Assume that \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(1  \) on \(D   \). Then, for \(t_n=\frac{1}{n}   \), we have
     \[f_n\left(\frac{1}{n}\right)-1=-\left(1-\frac{1}{n^2}\right)^n \mathbb{N}ot  \to 0,     \notag\]
    which is a contradiction. Therefore, \(\{f_n\}_{n\in \mathbb{N}}  \) is not uniformly convergent to \(1  \) on \(D   \).

     

    Exercise

    Consider \(f_n(t)=\frac{nt+2}{3+4n^2t^2} \)  on \(D=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}\cup\{0\}   \). Prove that \(\{f_n\}_{n\in \mathbb{N}}  \) is not uniformly convergent to \(0  \) on \(D   \).

     

     

    Theorem

    Let \(D\subset \mathbb{T}   \). If \(f_n:D  \to\mathbb{R}   \), \(n\in \mathbb{N}   \), are rd-continuous and \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(f:D  \to\mathbb{R}  \) on \(D   \), then \(f  \) is rd-continuous on \(D  \) and
     \[\int_a^bf(t) ^ \Delta t=\lim_{n  \to\infty}\int_a^bf_n(t) ^ \Delta t     \notag\]
    for every \([a,b]\subset D   \).

    Proof


    Let \(t_0\in D  \) be left-dense and right-scattered. Since \(\{f_n(t)\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(f  \) on \(D   \), for any given \(\varepsilon>0   \), there exists \(M\in \mathbb{N}  \) such that
     \[|f_M(t)-f(t)|<\frac{\varepsilon}{3}  \quad\mbox{for all}\quad t\in D.     \notag\]
    Because \(f_M  \) is rd-continuous on \(D   \), there exists \( ^ \Delta>0  \) such that
     \[|f_M(t')-f_M(t'')|<\frac{\varepsilon}{3}  \quad\mbox{for any}\quad t',t''\in(t_0- ^ \Delta,t_0).     \notag\]
    If \(t_n  \to t_0^-   \), \(n  \to\infty   \), \(n\in \mathbb{N}   \), then there exists \(N\in \mathbb{N}  \) such that \(m,n>N \)  imply \(t_m,t_n\in(t_0- ^ \Delta,t_0)  \) and
     \[|f_M(t_n)-f_M(t_m)|<\frac{\varepsilon}{3}.     \notag\]
    Hence, for \(m,n>N   \), we have
     \[ \begin{aligned}
       |f(t_n)-f(t_m)|
       &=& |f_M(t_n)-f(t_n)-f_M(t_n)-f_M(t_m)+f_M(t_m)-f(t_m)|  \\ \\
       &\leq& |f_M(t_n)-f(t_n)|+|f_M(t_n)-f_M(t_m)|  \\ \\
       && +|f_M(t_m)-f(t_m)|  \\ \\
       &<& \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}  \\ \\
       &=& \varepsilon.
      \end{aligned}   \notag\]
    Therefore, \(f  \) is rd-continuous on \(D   \). Hence, \(f  \) is integrable on every \([a,b]\subset D   \). For every \(n>M   \), we have
     \[ \begin{aligned}
       \left|\int_a^bf_n(t) ^ \Delta t-\int_a^bf(t) ^ \Delta t\right|
       &=& \left|\int_a^b(f_n(t)-f(t)) ^ \Delta t\right|  \\ \\
       &\leq& \int_a^b|f_n(t)-f(t)| ^ \Delta t  \\ \\
       &<& \frac{\varepsilon}{3}(b-a),
      \end{aligned}   \notag\]
    which completes the proof.
     

     

    Theorem

    Suppose that the function sequence
     \[\{f_n(t)\}_{n\in \mathbb{N}},\quad f_n(t):[a,b]  \to\mathbb{R},\quad n\in \mathbb{N},     \notag\]
    satisfies the following conditions.

    1. \(f_n   \), \(n\in \mathbb{N}   \), is differentiable on \([a,b]   \), and its derivative \(f_n ^\Delta  \) is rd-continuous on \([a,b]   \),

    2.  \(f_n  \) converges pointwise to \(f  \) on \([a,b]   \),

    3.  \(\left\{f_n ^\Delta\right\}_{n\in \mathbb{N}} \)  is uniformly convergent to \(g  \) on \([a,b]   \).

    Then \(f  \) is differentiable on \([a,b]  \) and
     \[f ^\Delta(t)=g(t)  \quad\mbox{for any}\quad t\in[a,b].     \notag\]

     

    Proof


    By Theorem \mathbb{R}ef{theorem196}, we have that \(g  \) is rd-continuous on \([a,b]   \). Therefore, \(g  \) is integrable on \([a,b]   \). Hence,  we get
     \[ \begin{aligned}
       \int_a^tg(s) ^ \Delta s
       &=& \lim_{n  \to\infty}\int_a^tf_n ^\Delta(s) ^ \Delta s  \\ \\
       &=& \lim_{n  \to\infty}\left(f_n(t)-f_n(a)\right)  \\ \\
       &=& f(t)-f(a)  \quad\mbox{for any}\quad t\in[a,b].
      \end{aligned}   \notag\]
    The left-hand side of the above formula is differentiable, so the right-hand side is also differentiable, and this leads to
     \[f ^\Delta(t)=g(t)  \quad\mbox{for all}\quad t\in[a,b],     \notag\]
    completing the proof.

     

    Theorem (Dini Test)

    Assume that the function sequence \(\{f_n\}_{n\in \mathbb{N}}   \), \(f_n:[a,b]  \to\mathbb{R}   \), converges pointwise to the function \(f  \) on \([a,b]   \). If the conditions

    1.  \(f_n   \), \(n\in \mathbb{N}   \), are rd-continuous on \([a,b]   \),

    2. \(f  \) is rd-continuous on \([a,b]   \),

    3. for any given \(t\in[a,b]   \),  \(\{f_n(t)\}_{n\in \mathbb{N}}  \) is monotone with respect to \(n\in \mathbb{N} \) 

    hold, then \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(f  \) on \([a,b]   \).

    Proof


    Suppose that the sequence \(\{f_n\}_{n\in \mathbb{N}} \)  is not uniformly convergent to \(f  \) on \([a,b]   \). Then there exists \(\varepsilon_0>0  \) such that for any given \(N\in \mathbb{N}   \), there exist \(n>N   \), \(t\in[a,b]   \), implying
    \begin{equation}\label{196}
       |f_n(t)-f(t)|\geq\varepsilon_0.
    \end{equation}
    For \(N=1   \), there exist \(n_1>1   \), \(t_1\in[a,b]   \), such that
     \[|f_{n_1}(t_1)-f(t_1)|\geq\varepsilon_0.     \notag\]
    For \(N=n_1   \), there exist \(n_2>n_1   \), \(t_2\in[a,b]   \), such that
     \[|f_{n_2}(t_2)-f(t_2)|\geq\varepsilon_0,     \notag\]
    and so on. For \(N=n_k  \) there exist \(n_{k+1}>n_k   \), \(t_{k+1}\in[a,b]   \), such that
     \[|f_{n_{k+1}}(t_{k+1})-f(t_{k+1})|\geq\varepsilon_0.     \notag\]
    Hence, we obtain a point sequence \(\{t_k\}_{k\in \mathbb{N}}   \), \(t_k\in[a,b]   \). This sequence has a convergent subsequence. Let \(\{t_{k_l}\}_{l\in \mathbb{N}}  \) be a convergent subsequence of the sequence \(\{t_k\}_{k\in \mathbb{N}}  \) and \(t_{k_l}  \to\xi  \) as \(l  \to\infty   \). We have that \(\xi\in[a,b]   \). Because \(f_n(\xi)  \to f(\xi)  \) as \(n  \to\infty   \), for the above \(\varepsilon_0   \), there exists \(N\in \mathbb{N}  \) such that
     \[|f_N(\xi)-f(\xi)|<\frac{\varepsilon_0}{2}.     \notag\]
    Suppose that \(\xi  \) is left-dense and right-scattered. Then, for the above sequence \(\{t_{k_l}\}_{l\in \mathbb{N}}   \), \(t_{k_l}\leq\xi  \) and \(t_{k_l}  \to\xi  \) as \(l  \to\infty   \). Thus, for \(\varepsilon_0>0   \), as above, there exists \(L\in \mathbb{N}  \) such that \(l>L  \) implies
     \[|\xi-t_{k_l}|<\varepsilon_0.     \notag\]
    Since \(f_N  \) and \(f  \) are rd-continuous on \([a,b]   \), we have that
     \[\left|\left(f_N(t_{k_l})-f(t_{k_l})\right)
      -\left(f_N(\xi)-f(\xi)\right)\right|
      <\frac{\varepsilon_0}{2}.     \notag\]
    Hence,
     \[ \begin{aligned}
       \left|f_N(t_{k_l})-f(t_{k_l})\right|
       &<& \frac{\varepsilon_0}{2}+|f_N(\xi)-f(\xi)|  \\ \\
       &<& \frac{\varepsilon_0}{2}+\frac{\varepsilon_0}{2}  \\ \\
       &=& \varepsilon_0.
      \end{aligned}   \notag\]
    Suppose that \(\xi  \) is not left-dense and right-scattered. Then \(\xi  \) is a point of continuity of \(f_N  \) and \(f   \). Because \(t_{k_l}  \to\xi   \), \(l  \to\infty   \), there exists \(L_1\in \mathbb{N}  \) such that \(l>L_1  \) implies
     \[|f_N(t_{k_l})-f(t_{k_l})|<\varepsilon_0.     \notag\]
    By using the monotonicity condition, we get
     \[|f_n(t_{k_l})-f(t_{k_l})|\leq|f_N(t_{k_l})-f(t_{k_l})|<\varepsilon_0     \notag\]
    with \(n>N   \), \(l>\max\{L,L_1\}   \). So when \(n  \) is sufficiently large, \(n_l>N  \) and \(l>\max\{L,L_1\}  \) are satisfied. Thus,
     \[|f_{n_{k_l}(t_{k_l})}-f(t_{k_l})|<\varepsilon_0,     \notag\]
    which contradicts to \eqref{196}. This completes the proof.


    This page titled Chapter 15: Sequences of Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Svetlin G. Georgiev.

    • Was this article helpful?