Chapter 16: Series of Functions
- Page ID
- 211986
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
Let \(f_n: \mathbb{T} \to\mathbb{R} \), \(n\in \mathbb{N} \). We consider the infinite series
\begin{equation}\label{193}
\sum_{n=1}^{\infty}f_n(t).
\end{equation}
If the numerical series \(\sum_{n=1}^{\infty}f_n(t_0) \), \(t_0\in \mathbb{T} \), is convergent, then \(t_0 \) is called a convergence point of the function series \eqref{193}. The set \(D \) of all convergence points of the series \eqref{193} is called its convergence domain. If a convergence domain of a function series is not empty, then the function series is called \em pointwise convergent on its convergence domain. We define \(F=\sum_{n=1}^{\infty}f_n \) on \(D \).
The function
\[F_n(t)=f_1(t)+f_2(t)+\cdots+f_n(t),\quad n\in \mathbb{N}, \notag\]
is called the {\em partial sum} or, more precisely, the \(n \) th partial sum of the function series \eqref{193}.
If the partial sum sequence \(\left\{F_n\right\}_{n\in \mathbb{N}} \) of the function series \eqref{193} is uniformly convergent to \(F \) on \(D \), then we term that the function series \eqref{193} is uniformly convergent to \(F \) on \(D \).
Let
\[ \mathbb{T}=(-1,0]\cup\left\{\frac{1}{n}:\; n\in \mathbb{N}\setminus\{1\}\right\}, \notag\]
where \((-1,0] \) is the real-valued interval. Consider the series
\begin{equation}\label{194}
\sum_{l=1}^{\infty}t^{l-1}.
\end{equation}
Note that the series \eqref{194} is pointwise convergent on \( \mathbb{T} \) to \(F(t)=\frac{1}{1-t} \). Moreover,
\[F_n(t)=\sum_{l=1}^nt^{l-1}=\frac{1-t^n}{1-t} \notag\]
and
\[F(t)-F_n(t)=\frac{1}{1-t}-\frac{1-t^n}{1-t}=\frac{t^n}{1-t}. \notag\]
Assume that the series \eqref{194} is uniformly convergent to \(F \) on \( \mathbb{T} \). Take \(\varepsilon>0 \) arbitrarily. Then there exists \(N\in \mathbb{N} \) such that \(n>N \) implies
\[\left|\frac{t^n}{1-t}\right|<\varepsilon \quad\mbox{for all}\quad t\in \mathbb{T}. \notag\]
If \(t\in[0,1) \), then
\[\frac{t^n}{1-t} \to\infty \quad\mbox{as}\quad t \to 1 \notag\]
and
\[\sup_{t\in[0,1)}\frac{t^n}{1-t}\geq 1. \notag\]
Therefore,
\[\sup_{t\in[0,1)}\frac{t^n}{1-t} \mathbb{N}ot \to 0 \quad\mbox{as}\quad n \to\infty. \notag\]
Hence, the series \eqref{194} is not uniformly convergent to \(F \) on \( \mathbb{T} \).
Let \( \mathbb{T}= \mathbb{Z} \). Consider the series
\[\sum_{l=1}^{\infty}\frac{(-1)^{l-1}}{t^2+l}. \notag\]
By the Leibniz criterion, we have that this series is pointwise convergent on \( \mathbb{T} \). Moreover,
\[ \begin{aligned}
\sup_{t\in \mathbb{T}}|F_n(t)-F(t)|
&\leq& \sup_{t\in \mathbb{T}}\frac{1}{t^2+n+1} \\ \\
&\leq& \frac{1}{n+1} \to 0 \quad\mbox{as}\quad n \to\infty.
\end{aligned} \notag\]
Therefore, the considered series is uniformly convergent on \( \mathbb{T} \).
The function series \(\sum_{n=1}^{\infty}f_n \) converges uniformly on \(D \) if and only if for any given \(\varepsilon>0 \), there exists \(N\in \mathbb{N} \) such that
\begin{equation}\label{195}
|f_{n+1}(t)+\cdots+f_m(t)|<\varepsilon
\end{equation}
for all \(m,n\in \mathbb{N} \) satisfying \(m>n \) and every point \(t\in D \).
Proof
1. Necessity.
Suppose that the function series \(\sum_{n=1}^{\infty}f_n \) converges uniformly on \(D \) and its sum function is \(F \). Then, for any given \(\varepsilon>0 \), there exists \(N\in \mathbb{N} \) such that \(n>N \) implies
\[\left|F(t)-\sum_{k=1}^n f_k(t)\right|<\frac{\varepsilon}{2} \quad\mbox{for all}\quad t\in D. \notag\]
Hence, for all \(m>n>N \) and all \(t\in D \), we have
\[ \begin{aligned}
|f_{n+1}(t)+\cdots+f_m(t)|
&=& \left|\sum_{k=1}^mf_k(t)-\sum_{k=1}^nf_k(t)\right| \\ \\
&=& \left|\sum_{k=1}^mf_k(t)-F(t)-\sum_{k=1}^nf_k(t)+F(t)\right| \\ \\
&\leq& \left|\sum_{k=1}^mf_k(t)-F(t)\right|
+\left|F(t)-\sum_{k=1}^nf_k(t)\right| \\ \\
&<& \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\ \\
&=& \varepsilon.
\end{aligned} \notag\]
2. Sufficiency.
Suppose that for any given \(\varepsilon>0 \), there exists \(N\in \mathbb{N} \) such that \eqref{195} holds for all \(m>n>N \) and all \(t\in D \). Fix \(t_0\in D \). Then the numerical series \(\sum_{n=1}^{\infty}f_n(t_0) \) satisfies the Cauchy criterion for convergence of a numerical series. Thus, the numerical series \(\sum_{n=1}^{\infty}f_n(t_0) \) is convergent. Because \(t_0\in D \) was arbitrarily chosen, we conclude that the series \(\sum_{n=1}^{\infty}f_n \) is pointwise convergent on \(D \). Let \(F \) be its sum function. Choose \(n \) for
\[\left|\sum_{k=1}^mf_k(t)-\sum_{k=1}^nf_k(t)\right|<\frac{\varepsilon}{2}
\quad\mbox{for all}\quad t\in \mathbb{T}. \notag\]
If \(m \to\infty \), then we get
\[\left|F(t)-\sum_{k=1}^nf_k(t)\right|
\leq\frac{\varepsilon}{2}<\varepsilon \quad\mbox{for all}\quad t\in D. \notag\]
Therefore, \(\sum_{k=1}^{\infty}f_k \) converges uniformly to \(F \) on \(D \).
This completes the proof.
A necessary condition for the series \(\sum_{n=1}^{\infty}f_n \) to converge uniformly on \(D \) is that \(f_n \to 0 \) uniformly on \(D \) as \(n \to\infty \).
Let \( \mathbb{T}=\left\{\frac{1}{\sqrt[3]{n}}:n\in \mathbb{N}\right\}\cup\{0\} \). Consider the series
\[\sum_{k=1}^{\infty}\frac{t^3}{(1+t^3)^k}. \notag\]
Thus,
\[ \begin{aligned}
\sum_{k=n+1}^{3n}\frac{t^3}{(1+t^3)^k}
&=& \frac{t^3}{(1+t^3)^{n+1}}+\frac{t^3}{(1+t^3)^{n+2}}+\cdots
+\frac{t^3}{(1+t^3)^{3n}} \\ \\
&>& \frac{3n t^3}{(1+t^3)^{3n}}.
\end{aligned} \notag\]
Let \(\varepsilon=\frac{3}{e^3} \). For any \(N\in \mathbb{N} \), we choose \(m=3n \), \(n>N \), and \(t_n=\frac{1}{\sqrt[3]{n}}\in \mathbb{T} \), so that
\[ \begin{aligned}
\sum_{k=n+1}^{3n}\frac{t^3}{(1+t^3)^k}
&>& \frac{3n\frac{1}{n}}{\left(1+\frac{1}{n}\right)^{3n}} \\ \\
&=& \frac{3}{\left(1+\frac{1}{n}\right)^{3n}}>\frac{3}{e^3}=\varepsilon.
\end{aligned} \notag\]
Then, we conclude that the considered series is nonuniformly convergent on \( \mathbb{T} \).
Suppose that every term \(f_n \) of the function series
\(\sum_{n=1}^{\infty} f_n \) satisfies
\[|f_n(t)|\leq a_n \quad\mbox{for all}\quad n\in \mathbb{N} \quad\mbox{and all}\quad t\in D, \notag\]
and the numerical series \(\sum_{n=1}^{\infty}a_n \) is convergent. Then the function series \(\sum_{n=1}^{\infty}f_n \) is uniformly convergent on \(D \).
Proof
Since the numerical series \(\sum_{k=1}^{\infty}a_k \) is convergent, for any \(\varepsilon>0 \), there exists \(N\in \mathbb{N} \) such that \(m>n>N \) imply
\[a_{n+1}+a_{n+2}+\cdots+a_m<\varepsilon. \notag\]
Hence,
\[ \begin{aligned}
\left|\sum_{k=n+1}^mf_k(t)\right|
&\leq& \sum_{k=n+1}^m|f_k(t)| \\ \\
&\leq& \sum_{k=n+1}^ma_k \\ \\
&<& \varepsilon.
\end{aligned} \notag\]
Then, we conclude that \(\sum_{n=1}^{\infty}f_n \) is uniformly convergent on \(D \).
Let \( \mathbb{T}=\P_{1,2}=\bigcup_{k=0}^{\infty}[3k,3k+1] \). Consider the series
\[\sum_{n=1}^{\infty}\frac{t^2}{1+n^5t^4}. \notag\]
We have \(f_n(t)=\frac{t^2}{1+n^5t^4} \) and
\[ \begin{aligned}
f_n(t)
&\leq& \frac{t^2}{n^{\frac{5}{2}}t^2} \\ \\
&=& \frac{1}{n^{\frac{5}{2}}}.
\end{aligned} \notag\]
Since \(\sum_{n=1}^{\infty}\frac{1}{n^{\frac{5}{2}}} \) is convergent, we conclude that the considered series is uniformly convergent on \( \mathbb{T} \).
Let \( \mathbb{T}=[-3,0]\cup\left\{\frac{1}{n}:n\in \mathbb{N}\right\} \), where \([-3,0] \) is the real-valued interval. Consider the series
\[\sum_{n=1}^{\infty} \frac{(t+1)\sin^2(nt)}{n\sqrt{n+1}}. \notag\]
Here, \(f_n(t)=\frac{(t+1)\sin^2(nt)}{n\sqrt{n+1}} \). We have
\[ \begin{aligned}
|f_n(t)|
&=& \left|\frac{(t+1)\sin^2(nt)}{n\sqrt{n+1}}\right| \\ \\
&=& \frac{|t+1|\sin^2(nt)}{n\sqrt{n+1}} \\ \\
&\leq& \frac{|t|+1}{n\sqrt{n+1}} \\ \\
&\leq& \frac{4}{n\sqrt{n+1}} \quad\mbox{for all}\quad t\in \mathbb{T}.
\end{aligned} \notag\]
Since \(\sum_{n=1}^{\infty}\frac{4}{n\sqrt{n+1}} \) is convergent, we conclude that the considered series is uniformly convergent on \( \mathbb{T} \).
Let \( \mathbb{T}= \mathbb{Z} \). Consider the series
\[\sum_{n=1}^{\infty}\frac{\cos(nt)}{n^4+1}. \notag\]
Here, \(f_n(t)=\frac{\cos(nt)}{n^4+1} \). We have
\[ \begin{aligned}
|f_n(t)|
&=& \left|\frac{\cos(nt)}{n^4+1}\right| \\ \\
&=& \frac{|\cos(nt)|}{n^4+1} \\ \\
&\leq& \frac{1}{n^4+1}.
\end{aligned} \notag\]
Since \(\sum_{n=1}^{\infty}\frac{1}{n^4+1} \) is convergent, we conclude that the considered series is uniformly convergent on \( \mathbb{T} \).
Prove that the following series are uniformly convergent.
1. \(\sum_{n=1}^{\infty}\frac{1}{n^2+nt+t^2} \), \( \mathbb{T}= \mathbb{Z} \),
2. \(\sum_{n=1}^{\infty}\frac{1}{3^n\sqrt{1+(2n+1)t}} \), \( \mathbb{T}= \mathbb{N} \),
3. \(\sum_{n=1}^{\infty}\frac{1}{n^2}\sin\frac{t}{n} \), \( \mathbb{T}=3^{ \mathbb{N}_0} \),
4. \(\sum_{n=1}^{\infty}\frac{e^{-n^2t^2}}{1+n^2} \), \( \mathbb{T}= \mathbb{Z} \),
5. \(\sum_{n=1}^{\infty}\frac{\sqrt{1-t^{2n}}}{2^n} \), \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}\cup\{0\} \),
6. \(\sum_{n=1}^{\infty}\frac{t^n}{n\sqrt{n}} \), \( \mathbb{T}=\left\{\frac{1}{n}: n\in \mathbb{N}\right\}\cup\{0\} \).
Consider the series \(\sum_{n=1}^{\infty}\frac{e^{-nt}}{n!} \) on \( \mathbb{T}= \mathbb{N} \). We have that the sequence \(\left\{e^{-nt}\right\}_{n\in \mathbb{N}} \) is monotone for each fixed \(t\in \mathbb{T} \) with respect to \(n \) and it is uniformly bounded by \(1 \) on \( \mathbb{T} \). Note that \(\sum_{n=1}^{\infty}\frac{1}{n!} \) is a convergent numerical series. Hence, we conclude that the considered series is uniformly convergent on \( \mathbb{T} \).
Let \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\right\} \). Consider the series
\[\sum_{n=1}^{\infty}\frac{(-1)^{n-1}t^n}{n(1+t^n)} \quad\mbox{on} \quad \mathbb{T}. \notag\]
Note that the series \(\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n} \) is a convergent numerical series on \( \mathbb{T} \). Also, the sequence \(\left\{\frac{t^n}{1+t^n}\right\}_{n\in \mathbb{N}} \) is monotone on \( \mathbb{T} \) with respect to \(n \) and uniformly bounded by \(1 \) on \( \mathbb{T} \). Hence, it follows that the considered series is uniformly convergent on \( \mathbb{T} \).
Using the Abel test, prove that the series
\[\sum_{n=1}^{\infty}\frac{(-1)^n\sqrt{n}}{\sqrt{n+t}\log\log(2\sqrt{n}+1)} \notag\]
is uniformly convergent on \( \mathbb{T}= \mathbb{N} \).
Suppose that the function sequence \(\{f_n(t)\}_{n\in \mathbb{N}} \) is monotone for each \(t\in D \) with respect to \(n \) and \(\{f_n\}_{n\in \mathbb{N}} \) is uniformly convergent to \(0 \) on \(D \). In addition, assume that the partial sum sequence of \(\sum_{n=1}^{\infty}g_n(t) \) is uniformly bounded on \(D \), i.e.,
\[\left|\sum_{k=1}^n g_k(t)\right|\leq M
\quad\mbox{for all}\quad t\in D \quad\mbox{and}\quad n\in \mathbb{N}. \notag\]
Then \(\sum_{n=1}^{\infty}f_ng_n \) is uniformly convergent on \(D \).
Proof
Since \(\{f_n\}_{n\in \mathbb{N}} \) is uniformly convergent to \(0 \) on \(D \), for any given \(\varepsilon>0 \), there exists \(N\in \mathbb{N} \) such that \(n>N \) implies
\[|f_n(t)|<\varepsilon \quad\mbox{for all}\quad t\in D. \notag\]
Moreover, for all \(m>n>N \), we have
\[ \begin{aligned}
\left|\sum_{k=n+1}^mg_k(t)\right|
&=& \left|\sum_{k=1}^mg_k(t)-\sum_{k=1}^{n}g_k(t)\right| \\ \\
&\leq& \left|\sum_{k=1}^mg_k(t)\right|+\left|\sum_{k=1}^ng_k(t)\right| \\ \\
&\leq& 2M.
\end{aligned} \notag\]
Using the Abel lemma, we get
\[ \begin{aligned}
\left|\sum_{k=n+1}^mf_k(t)g_k(t)\right|
&\leq& 2M\left(|f_{n+1}(t)|+2|f_m(t)|\right) \\ \\
&<& 6M\varepsilon.
\end{aligned} \notag\]
Hence, it follows that \(\sum_{n=1}^{\infty}f_ng_n \) is uniformly convergent on \(D \).
Let \( \mathbb{T}= \mathbb{N}_0\cup\left\{1-\frac{1}{n}: n\in \mathbb{N}\right\} \). Consider the series
\[\sum_{n=1}^{\infty}\frac{(-1)^n}{n+t^2}. \notag\]
We set
\[f_n(t)=\frac{1}{n+t^2},\quad g_n(t)=(-1)^n,\quad t\in D,\quad n\in \mathbb{N}. \notag\]
Then the sequence \(\{f_n(t)\}_{n\in \mathbb{N}} \) is monotone for each \(t\in D \) with respect to \(n \), and it is uniformly convergent to \(0 \) on \(D \). Moreover,
\[\left|\sum_{k=1}^ng_k(t)\right|\leq 1 \quad\mbox{for all}\quad t\in D,\quad n\in \mathbb{N}. \notag\]
Hence, utilizing the Dirichlet test, we conclude that the considered series is uniformly convergent on \(D \).
Let \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\setminus\{1\}\right\} \). Consider the series
\[\sum_{n=1}^{\infty}\frac{(-1)^{n-1}t^n}{1+t+\cdots+t^{2n-1}}. \notag\]
We set
\[f_n(t)= \frac{t^n}{1+t+\cdots+t^{2n-1}},\quad
g_n(t)=(1-)^{n-1},\quad t\in D,\quad n\in \mathbb{N}. \notag\]
Then
\[ \begin{aligned}
f_n(t)
&<& \frac{t^n}{1+t+\cdots+t^{n-1}} \\ \\
&<& \frac{t^n}{nt^n} \\ \\
&=& \frac{1}{n} \to 0 \quad\mbox{as}\quad n \to\infty,
\end{aligned} \notag\]
i.e., the sequence \(\{f_n\}_{n\in \mathbb{N}} \) is uniformly convergent to \(0 \) on \( \mathbb{T} \). Moreover,
\[\frac{t^{n+1}}{1+t+\cdots+t^{2n-1}+t^{2n+1}}
<\frac{t^n}{1+t+t^2+\cdots+t^{2n-1}}, \notag\]
i.e., the sequence \(\{f_n(t)\}_{n\in \mathbb{N}} \) is monotone for each \(t\in \mathbb{T} \) with respect to \(n \). Note that
\[\left|\sum_{k=1}^n g_k(t)\right|\leq 1 \quad\mbox{for}\quad t\in \mathbb{T},\quad n\in \mathbb{N}. \notag\]
Hence, using the Dirichlet test, it follows that the considered series is uniformly convergent on \( \mathbb{N} \).
Let \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\right\} \). Using the Dirichlet Test, prove that
\[\sum_{n=1}^{\infty}\frac{(-1)^{n-1}t^{2n}}{2n-1} \notag\]
is uniformly convergent on \( \mathbb{T} \).


