Skip to main content
Mathematics LibreTexts

Chapter 16: Series of Functions

  • Page ID
    211986
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

     

     

    Let \(f_n: \mathbb{T}  \to\mathbb{R}   \), \(n\in \mathbb{N}   \). We consider the infinite series
    \begin{equation}\label{193}
       \sum_{n=1}^{\infty}f_n(t).
    \end{equation}

    Definition:

    If the numerical series \(\sum_{n=1}^{\infty}f_n(t_0)   \), \(t_0\in \mathbb{T}   \), is convergent, then \(t_0  \) is called a  convergence point of the function series \eqref{193}. The set \(D  \) of all convergence points of the series \eqref{193} is called its  convergence domain. If a convergence domain of a function series is not empty, then the function series is called \em pointwise convergent on its convergence domain. We define \(F=\sum_{n=1}^{\infty}f_n  \) on \(D   \).
     

     

    Definition:

    The function
     \[F_n(t)=f_1(t)+f_2(t)+\cdots+f_n(t),\quad n\in \mathbb{N},     \notag\]
    is called the {\em partial sum} or, more precisely, the \(n \) th partial sum of the function series \eqref{193}.

     

    Definition:

    If the partial sum sequence \(\left\{F_n\right\}_{n\in \mathbb{N}} \) of the function series \eqref{193} is uniformly convergent to \(F  \) on \(D   \), then we term that the function series \eqref{193} is  uniformly convergent to \(F  \) on \(D   \).

     

    Example

    Let
     \[ \mathbb{T}=(-1,0]\cup\left\{\frac{1}{n}:\; n\in \mathbb{N}\setminus\{1\}\right\},     \notag\]
    where \((-1,0]  \) is the real-valued interval. Consider the series
    \begin{equation}\label{194}
       \sum_{l=1}^{\infty}t^{l-1}.
    \end{equation}
    Note that the series \eqref{194} is pointwise convergent on \( \mathbb{T} \)  to \(F(t)=\frac{1}{1-t}   \). Moreover,
     \[F_n(t)=\sum_{l=1}^nt^{l-1}=\frac{1-t^n}{1-t}     \notag\]
    and
     \[F(t)-F_n(t)=\frac{1}{1-t}-\frac{1-t^n}{1-t}=\frac{t^n}{1-t}.     \notag\]
    Assume that the series \eqref{194} is uniformly convergent to \(F  \) on \( \mathbb{T}   \). Take \(\varepsilon>0  \) arbitrarily. Then there exists \(N\in \mathbb{N}  \) such that \(n>N  \) implies
     \[\left|\frac{t^n}{1-t}\right|<\varepsilon  \quad\mbox{for all}\quad t\in \mathbb{T}.     \notag\]
    If \(t\in[0,1)   \), then
     \[\frac{t^n}{1-t}  \to\infty  \quad\mbox{as}\quad t  \to 1     \notag\]
    and
     \[\sup_{t\in[0,1)}\frac{t^n}{1-t}\geq 1.     \notag\]
    Therefore,
     \[\sup_{t\in[0,1)}\frac{t^n}{1-t} \mathbb{N}ot  \to 0  \quad\mbox{as}\quad n  \to\infty.     \notag\]
    Hence, the series \eqref{194} is not uniformly convergent to \(F  \) on \( \mathbb{T}   \).

     

    Example

    Let \( \mathbb{T}= \mathbb{Z}   \). Consider the series
     \[\sum_{l=1}^{\infty}\frac{(-1)^{l-1}}{t^2+l}.     \notag\]
    By the Leibniz criterion, we have that this series is pointwise convergent on \( \mathbb{T}   \). Moreover,
     \[ \begin{aligned}
       \sup_{t\in \mathbb{T}}|F_n(t)-F(t)|
       &\leq& \sup_{t\in \mathbb{T}}\frac{1}{t^2+n+1}  \\ \\
       &\leq& \frac{1}{n+1}  \to 0  \quad\mbox{as}\quad n  \to\infty.
      \end{aligned}   \notag\]
    Therefore, the considered series is uniformly convergent on \( \mathbb{T}   \).

     

    Theorem (Cauchy Criterion)

    The function series \(\sum_{n=1}^{\infty}f_n  \) converges uniformly on \(D \)  if and only if for any given \(\varepsilon>0   \), there exists \(N\in \mathbb{N}  \) such that
    \begin{equation}\label{195}
       |f_{n+1}(t)+\cdots+f_m(t)|<\varepsilon
    \end{equation}
    for all \(m,n\in \mathbb{N}  \) satisfying \(m>n  \) and every point \(t\in D   \).

    Proof


    1.  Necessity.

    Suppose that the function series \(\sum_{n=1}^{\infty}f_n \)  converges uniformly on \(D  \) and its sum function is \(F   \). Then, for any given \(\varepsilon>0   \), there exists \(N\in \mathbb{N}  \) such that \(n>N  \) implies
     \[\left|F(t)-\sum_{k=1}^n f_k(t)\right|<\frac{\varepsilon}{2}  \quad\mbox{for all}\quad t\in D.     \notag\]
    Hence, for all \(m>n>N  \) and all \(t\in D   \), we have
     \[ \begin{aligned}
       |f_{n+1}(t)+\cdots+f_m(t)|
       &=& \left|\sum_{k=1}^mf_k(t)-\sum_{k=1}^nf_k(t)\right|  \\ \\
       &=& \left|\sum_{k=1}^mf_k(t)-F(t)-\sum_{k=1}^nf_k(t)+F(t)\right|  \\ \\
       &\leq& \left|\sum_{k=1}^mf_k(t)-F(t)\right|
             +\left|F(t)-\sum_{k=1}^nf_k(t)\right|  \\ \\
       &<& \frac{\varepsilon}{2}+\frac{\varepsilon}{2}  \\ \\
       &=& \varepsilon.
      \end{aligned}   \notag\]

    2.  Sufficiency.

    Suppose that for any given \(\varepsilon>0   \), there exists \(N\in \mathbb{N}  \) such that \eqref{195} holds for all \(m>n>N  \) and all \(t\in D   \). Fix \(t_0\in D   \). Then the numerical series \(\sum_{n=1}^{\infty}f_n(t_0)  \) satisfies the Cauchy criterion for convergence of a numerical series. Thus, the numerical series \(\sum_{n=1}^{\infty}f_n(t_0)  \) is convergent. Because \(t_0\in D  \) was arbitrarily chosen, we conclude that the series \(\sum_{n=1}^{\infty}f_n  \) is pointwise convergent on \(D   \). Let \(F  \) be its sum function. Choose \(n  \) for
     \[\left|\sum_{k=1}^mf_k(t)-\sum_{k=1}^nf_k(t)\right|<\frac{\varepsilon}{2}
        \quad\mbox{for all}\quad t\in \mathbb{T}.     \notag\]
    If \(m  \to\infty   \), then we get
     \[\left|F(t)-\sum_{k=1}^nf_k(t)\right|
       \leq\frac{\varepsilon}{2}<\varepsilon  \quad\mbox{for all}\quad t\in D.     \notag\]
    Therefore, \(\sum_{k=1}^{\infty}f_k  \) converges uniformly to \(F  \) on \(D   \).

    This completes the proof.

     

    Corollary 

    A necessary condition for the series \(\sum_{n=1}^{\infty}f_n  \) to converge uniformly on \(D  \) is that \(f_n  \to 0  \) uniformly on \(D  \) as \(n  \to\infty   \).

    Example

    Let \( \mathbb{T}=\left\{\frac{1}{\sqrt[3]{n}}:n\in \mathbb{N}\right\}\cup\{0\}   \). Consider the series
     \[\sum_{k=1}^{\infty}\frac{t^3}{(1+t^3)^k}.     \notag\]
    Thus,
     \[ \begin{aligned}
       \sum_{k=n+1}^{3n}\frac{t^3}{(1+t^3)^k}
       &=& \frac{t^3}{(1+t^3)^{n+1}}+\frac{t^3}{(1+t^3)^{n+2}}+\cdots
          +\frac{t^3}{(1+t^3)^{3n}}  \\ \\
       &>& \frac{3n t^3}{(1+t^3)^{3n}}.
      \end{aligned}   \notag\]
    Let \(\varepsilon=\frac{3}{e^3}   \). For any \(N\in \mathbb{N}   \), we choose \(m=3n   \), \(n>N   \), and \(t_n=\frac{1}{\sqrt[3]{n}}\in \mathbb{T}   \), so that
     \[ \begin{aligned}
       \sum_{k=n+1}^{3n}\frac{t^3}{(1+t^3)^k}
       &>& \frac{3n\frac{1}{n}}{\left(1+\frac{1}{n}\right)^{3n}}  \\ \\
       &=& \frac{3}{\left(1+\frac{1}{n}\right)^{3n}}>\frac{3}{e^3}=\varepsilon.
      \end{aligned}   \notag\]
    Then, we conclude that the considered series is nonuniformly convergent on \( \mathbb{T}   \).

     

    Theorem (The Abel Test)

    Suppose that every term \(f_n  \) of the function series
    \(\sum_{n=1}^{\infty} f_n  \) satisfies
     \[|f_n(t)|\leq a_n  \quad\mbox{for all}\quad n\in \mathbb{N}  \quad\mbox{and all}\quad t\in D,     \notag\]
    and the numerical series \(\sum_{n=1}^{\infty}a_n  \) is convergent. Then the function series \(\sum_{n=1}^{\infty}f_n \)  is uniformly convergent on \(D   \).

    Proof


    Since the numerical series \(\sum_{k=1}^{\infty}a_k  \) is convergent, for any \(\varepsilon>0   \), there exists \(N\in \mathbb{N}  \) such that \(m>n>N  \) imply
     \[a_{n+1}+a_{n+2}+\cdots+a_m<\varepsilon.     \notag\]
    Hence,
     \[ \begin{aligned}
       \left|\sum_{k=n+1}^mf_k(t)\right|
       &\leq& \sum_{k=n+1}^m|f_k(t)|  \\ \\
       &\leq& \sum_{k=n+1}^ma_k  \\ \\
       &<& \varepsilon.
      \end{aligned}   \notag\]
    Then, we conclude that \(\sum_{n=1}^{\infty}f_n  \) is uniformly convergent on \(D   \).

     

    Example

    Let \( \mathbb{T}=\P_{1,2}=\bigcup_{k=0}^{\infty}[3k,3k+1]   \). Consider the series
     \[\sum_{n=1}^{\infty}\frac{t^2}{1+n^5t^4}.     \notag\]
    We have \(f_n(t)=\frac{t^2}{1+n^5t^4}  \) and
     \[ \begin{aligned}
       f_n(t)
       &\leq& \frac{t^2}{n^{\frac{5}{2}}t^2}  \\ \\
       &=& \frac{1}{n^{\frac{5}{2}}}.
      \end{aligned}   \notag\]
    Since \(\sum_{n=1}^{\infty}\frac{1}{n^{\frac{5}{2}}}  \) is convergent, we conclude that the considered series is uniformly convergent on \( \mathbb{T}   \).

    Example

    Let \( \mathbb{T}=[-3,0]\cup\left\{\frac{1}{n}:n\in \mathbb{N}\right\}   \), where \([-3,0]  \) is the real-valued interval. Consider the series
     \[\sum_{n=1}^{\infty} \frac{(t+1)\sin^2(nt)}{n\sqrt{n+1}}.     \notag\]
    Here, \(f_n(t)=\frac{(t+1)\sin^2(nt)}{n\sqrt{n+1}}   \). We have
     \[ \begin{aligned}
       |f_n(t)|
       &=& \left|\frac{(t+1)\sin^2(nt)}{n\sqrt{n+1}}\right|  \\ \\
       &=& \frac{|t+1|\sin^2(nt)}{n\sqrt{n+1}}  \\ \\
       &\leq& \frac{|t|+1}{n\sqrt{n+1}}  \\ \\
       &\leq& \frac{4}{n\sqrt{n+1}}  \quad\mbox{for all}\quad t\in \mathbb{T}.
      \end{aligned}   \notag\]
    Since \(\sum_{n=1}^{\infty}\frac{4}{n\sqrt{n+1}}  \) is convergent, we conclude that the considered series is uniformly convergent on \( \mathbb{T}   \).

     

    Example

    Let \( \mathbb{T}= \mathbb{Z}   \). Consider the series
     \[\sum_{n=1}^{\infty}\frac{\cos(nt)}{n^4+1}.     \notag\]
    Here, \(f_n(t)=\frac{\cos(nt)}{n^4+1}   \). We have
     \[ \begin{aligned}
       |f_n(t)|
       &=& \left|\frac{\cos(nt)}{n^4+1}\right|  \\ \\
       &=& \frac{|\cos(nt)|}{n^4+1}  \\ \\
       &\leq& \frac{1}{n^4+1}.
      \end{aligned}   \notag\]
    Since \(\sum_{n=1}^{\infty}\frac{1}{n^4+1}  \) is convergent, we conclude that the considered series is uniformly convergent on \( \mathbb{T}   \).

     

    Exercise

    Prove that the following series are uniformly convergent.

    1.  \(\sum_{n=1}^{\infty}\frac{1}{n^2+nt+t^2}   \), \( \mathbb{T}= \mathbb{Z}   \),

    2.  \(\sum_{n=1}^{\infty}\frac{1}{3^n\sqrt{1+(2n+1)t}}   \), \( \mathbb{T}= \mathbb{N}   \),

    3.  \(\sum_{n=1}^{\infty}\frac{1}{n^2}\sin\frac{t}{n}   \), \( \mathbb{T}=3^{ \mathbb{N}_0}   \),

    4.  \(\sum_{n=1}^{\infty}\frac{e^{-n^2t^2}}{1+n^2}   \), \( \mathbb{T}= \mathbb{Z}   \),

    5.  \(\sum_{n=1}^{\infty}\frac{\sqrt{1-t^{2n}}}{2^n}   \),  \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}\cup\{0\}   \),

    6.  \(\sum_{n=1}^{\infty}\frac{t^n}{n\sqrt{n}}   \), \( \mathbb{T}=\left\{\frac{1}{n}: n\in \mathbb{N}\right\}\cup\{0\}   \).

     

     

    Example

    Consider the series \(\sum_{n=1}^{\infty}\frac{e^{-nt}}{n!}  \) on \( \mathbb{T}= \mathbb{N}   \). We have that the sequence \(\left\{e^{-nt}\right\}_{n\in \mathbb{N}}  \) is monotone for each fixed \(t\in \mathbb{T}  \) with respect to \(n \)  and it is uniformly bounded by \(1  \) on \( \mathbb{T}   \). Note that \(\sum_{n=1}^{\infty}\frac{1}{n!}  \) is a convergent numerical series. Hence, we conclude that the considered series is uniformly convergent on \( \mathbb{T}   \).

     

    Example

    Let \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}   \). Consider the series
     \[\sum_{n=1}^{\infty}\frac{(-1)^{n-1}t^n}{n(1+t^n)}  \quad\mbox{on} \quad \mathbb{T}.     \notag\]
    Note that the series \(\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}  \) is a convergent numerical series on \( \mathbb{T}   \). Also, the sequence \(\left\{\frac{t^n}{1+t^n}\right\}_{n\in \mathbb{N}}  \) is monotone on \( \mathbb{T}  \) with respect to \(n  \) and uniformly bounded by \(1  \) on \( \mathbb{T}   \). Hence, it follows that the considered series is uniformly convergent on \( \mathbb{T}   \).

    Exercise

    Using the Abel test, prove that the series
     \[\sum_{n=1}^{\infty}\frac{(-1)^n\sqrt{n}}{\sqrt{n+t}\log\log(2\sqrt{n}+1)}     \notag\]
    is uniformly convergent on \( \mathbb{T}= \mathbb{N}   \).

     

    Theorem (Dirichlet Test)

    Suppose that the function sequence \(\{f_n(t)\}_{n\in \mathbb{N}}  \) is monotone for each \(t\in D  \) with respect to \(n \)  and \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(0  \) on \(D   \). In addition, assume that the partial sum sequence of \(\sum_{n=1}^{\infty}g_n(t)  \) is uniformly bounded on \(D   \), i.e.,
     \[\left|\sum_{k=1}^n g_k(t)\right|\leq M
        \quad\mbox{for all}\quad t\in D  \quad\mbox{and}\quad n\in \mathbb{N}.     \notag\]
    Then \(\sum_{n=1}^{\infty}f_ng_n  \) is uniformly convergent on \(D   \).

    Proof

    Since \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(0  \) on \(D   \), for any given \(\varepsilon>0   \), there exists \(N\in \mathbb{N}  \) such that \(n>N  \) implies
     \[|f_n(t)|<\varepsilon  \quad\mbox{for all}\quad t\in D.     \notag\]
    Moreover, for all \(m>n>N   \), we have
     \[ \begin{aligned}
       \left|\sum_{k=n+1}^mg_k(t)\right|
       &=& \left|\sum_{k=1}^mg_k(t)-\sum_{k=1}^{n}g_k(t)\right|  \\ \\
       &\leq& \left|\sum_{k=1}^mg_k(t)\right|+\left|\sum_{k=1}^ng_k(t)\right|  \\ \\
       &\leq& 2M.
      \end{aligned}   \notag\]
    Using the Abel lemma, we get
     \[ \begin{aligned}
       \left|\sum_{k=n+1}^mf_k(t)g_k(t)\right|
       &\leq& 2M\left(|f_{n+1}(t)|+2|f_m(t)|\right)  \\ \\
       &<& 6M\varepsilon.
      \end{aligned}   \notag\]
    Hence, it follows that \(\sum_{n=1}^{\infty}f_ng_n  \) is uniformly convergent on \(D   \).

     

    Example

    Let \( \mathbb{T}= \mathbb{N}_0\cup\left\{1-\frac{1}{n}: n\in \mathbb{N}\right\}   \). Consider the series
     \[\sum_{n=1}^{\infty}\frac{(-1)^n}{n+t^2}.     \notag\]
    We set
     \[f_n(t)=\frac{1}{n+t^2},\quad g_n(t)=(-1)^n,\quad t\in D,\quad n\in \mathbb{N}.     \notag\]
    Then the sequence \(\{f_n(t)\}_{n\in \mathbb{N}}  \) is monotone for each \(t\in D  \) with respect to \(n   \), and it is uniformly convergent to \(0  \) on \(D   \). Moreover,
     \[\left|\sum_{k=1}^ng_k(t)\right|\leq 1  \quad\mbox{for all}\quad t\in D,\quad n\in \mathbb{N}.     \notag\]
    Hence, utilizing the Dirichlet test, we conclude that the considered series is uniformly convergent on \(D   \).

    Example

    Let \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\setminus\{1\}\right\}   \). Consider the series
     \[\sum_{n=1}^{\infty}\frac{(-1)^{n-1}t^n}{1+t+\cdots+t^{2n-1}}.     \notag\]
    We set
     \[f_n(t)= \frac{t^n}{1+t+\cdots+t^{2n-1}},\quad
       g_n(t)=(1-)^{n-1},\quad t\in D,\quad n\in \mathbb{N}.     \notag\]
    Then
     \[ \begin{aligned}
       f_n(t)
       &<& \frac{t^n}{1+t+\cdots+t^{n-1}}  \\ \\
       &<& \frac{t^n}{nt^n}  \\ \\
       &=& \frac{1}{n}  \to 0  \quad\mbox{as}\quad n  \to\infty,
      \end{aligned}   \notag\]
    i.e., the sequence \(\{f_n\}_{n\in \mathbb{N}}  \) is uniformly convergent to \(0  \) on \( \mathbb{T}   \). Moreover,
     \[\frac{t^{n+1}}{1+t+\cdots+t^{2n-1}+t^{2n+1}}
       <\frac{t^n}{1+t+t^2+\cdots+t^{2n-1}},     \notag\]
    i.e., the sequence \(\{f_n(t)\}_{n\in \mathbb{N}}  \) is monotone for each \(t\in \mathbb{T}  \) with respect to \(n   \). Note that
     \[\left|\sum_{k=1}^n g_k(t)\right|\leq 1  \quad\mbox{for}\quad t\in \mathbb{T},\quad n\in \mathbb{N}.     \notag\]
    Hence, using the Dirichlet test, it follows that the considered series is uniformly convergent on \( \mathbb{N}   \).

     

    Exercise

    Let \( \mathbb{T}=\left\{\frac{1}{n}:n\in \mathbb{N}\right\}   \). Using the Dirichlet Test, prove that
     \[\sum_{n=1}^{\infty}\frac{(-1)^{n-1}t^{2n}}{2n-1}     \notag\]
    is uniformly convergent on \( \mathbb{T}   \).


     


    This page titled Chapter 16: Series of Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Svetlin G. Georgiev.

    • Was this article helpful?