Skip to main content
Mathematics LibreTexts

Dynamic Parametric Curves

  • Page ID
    91150
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Visualizing a Parametric Curves As Time Elapses

    Unlike curves that are described in the form \(y=f(x)\) that just give the static path of an object, parametrically described curves, \(x=x(t), y = y(t)\), give the dynamic motion of an object. The visualization below shows the graph of the static curve defined parametrically, but if you click on the "Move" button, you can observe its dynamic motion by observing the dynamic motion of an ant as it travels according to the motion described by the parametrically defined path.  If you click on the Next button, it will take you to a different parametrically defined curve.

    \(x(t)=\sin(t), y(t)=2\sin(t), 0<t<20\)

    \(x(t)=t^2, y(t)=t^3, -2<t<2\)

    \(x(t)=\cos(-t), y(t)=\sin(-t), 0<t<20\)

    \(x(t)=e^t, y(t)=e^{2t}, -2<t<1\)

    \(x(t)=t^3-6t, y(t)=t^2-5, 0<t<3\)

    \(x(t)=t-\sin(t), y(t)=1-\cos(t), 0<t<10\)

    \(x(t)=2\cos(t^2), y(t)=2\sin(t^2), 0<t<8\)

    \(x(t)=e^t\cos(8t), y(t)=e^t\sin(8t), -2<t<2\)

    \(x(t)=\frac{1}{t}, y(t)=\frac{1}{t^2}, -4<t<4\)

    \(x(t)=t+t^2, y(t)=t-t^2, -3<t<3\)

      

    ant.JPG

     


    Dynamic Parametric Curves is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?