Skip to main content
Mathematics LibreTexts

Integral Test Use

  • Page ID
    90454
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    You will be shown a graph and the result of integrating from 1 to \(\infty\).  Your task is to decide whether the integral test gives convergence or divergence of the corresponding sum or if the integral test cannot be used.  Click on the Start button to begin.

    \(\int_1^{\infty}e^{-x}dx=e^1,  \displaystyle \sum^∞_{n=1}e^{-x}\)

    \(\int_1^{\infty}\frac{1}{\sqrt{x}}dx=\infty,  \displaystyle \sum^∞_{n=1}\frac{1}{\sqrt{n}}\)

    \(\int_1^{\infty}\frac{\sin(4x)}{x}dx\sim-0.19,  \displaystyle \sum^∞_{n=1}\frac{\sin(4n)}{n}\)

    \(\int_1^{\infty}(x+1)^\frac{-3}{2}dx=\sqrt{2},  \displaystyle \sum^∞_{n=1}(n+1)^\frac{-3}{2}\)

    \(\int_1^{\infty}\frac{1}{(x+1)\ln(x+1)}dx=\infty,  \displaystyle \sum^∞_{n=1}\frac{1}{(n+1)\ln(n+1)}\)

    \(\int_1^{\infty}\frac{x}{x+1}dx=\infty,  \displaystyle \sum^∞_{n=1}\frac{n}{n+1}\)

    \(\int_1^{\infty}\frac{x}{e^{x^2}}dx=\frac{1}{2e},  \displaystyle \sum^∞_{n=1}\frac{n}{e^{n^2}}\)

    \(\int_1^{\infty}\frac{1}{\sqrt{1+x^2}}dx=\infty,  \displaystyle \sum^∞_{n=1}\frac{1}{\sqrt{1+n^2}}\)

    \(\int_1^{\infty}\frac{\cos(3x)}{e^x}dx\sim0.052,  \displaystyle \sum^∞_{n=1}\frac{\cos(3n)}{e^n}\)

    \(\int_1^{\infty}\frac{1}{1+x^2}dx=\frac{\pi}{4},  \displaystyle \sum^∞_{n=1}\frac{1}{1+n^2}\)

    \(\int_1^{\infty}\frac{x}{1+x^2}dx=\infty,  \displaystyle \sum^∞_{n=1}\frac{n}{1+n^2}\)

    \(\int_1^{\infty}\frac{1+2\cos(2x)}{x+\sin(2x)}dx=\infty,  \displaystyle \sum^∞_{n=1}\frac{1+2\cos(2n)}{n+\sin(2n)}\)

         Diverges                Converges                Integral Test Cannot be Used

     


    Integral Test Use is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?