Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

Table of Derivatives

  • Page ID
    10812
  • [ "stage:draft", "article:topic" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

     

    Differentiation Rules

    Sum Rule

    \(\displaystyle \frac {d} {dx} (\textcolor{blue}{f(x)} + \textcolor{brown}{g (x)})  = (\textcolor{blue}{f(x)} + \textcolor{brown}{g (x)}) '= \textcolor{blue}{f'(x)} + \textcolor{brown}{g'(x)} \)

    Constant Multiple Rule \( \displaystyle \frac {d} {dx} (c\textcolor{blue}{f(x)}) = (c\textcolor{blue}{f(x)})'= c\textcolor{blue}{f'(x)} \)
    Product Rule \( \displaystyle \frac {d} {dx} (\textcolor{blue}{f(x)}\textcolor{brown}{g(x)}) = (\textcolor{blue}{f(x)}\textcolor{brown}{g(x)})'= \textcolor{blue}{f'(x)}\textcolor{brown}{g(x)} + \textcolor{blue}{f(x)}\textcolor{brown}{g'(x)} \)
      \( \displaystyle \frac {d} {dx} (\displaystyle \frac {1} {\textcolor{blue}{f(x)}}) = -\displaystyle \frac {\textcolor{blue}{f'(x)}} {(\textcolor{blue}{f(x)})^2} \)
    Quotient Rule \( \displaystyle \frac {d} {dx}  \left(\displaystyle \frac {\textcolor{blue}{f(x)}} {\textcolor{brown}{g(x)}} \right) =\left(\displaystyle \frac {\textcolor{blue}{f(x)}} {\textcolor{brown}{g(x)}}\right)'=\displaystyle \frac {\textcolor{brown}{g(x)}\textcolor{blue}{f'(x)} - \textcolor{blue}{f(x)}\textcolor{brown}{g'(x)}} {(\textcolor{brown}{g(x)})^2} \)
    Chain Rule \( \displaystyle \frac {d} {dx}  \textcolor{blue}{f(}\textcolor{ brown }{g(x)}\textcolor{blue}{)}= \left(\textcolor{blue}{f(}\textcolor{ brown }{g(x)}\textcolor{blue}{)} \right)'= \textcolor{blue}{f'(}\textcolor{ brown }{g(x)}\textcolor{blue}{)}\textcolor{ brown }{g'(x)} \)

     

    Derivatives for Elementary Trancendental Functions

    \( \displaystyle \frac {d} {dx} \textcolor{orange}{x}^\textcolor{magenta}{n} = \textcolor{magenta}{n}\textcolor{orange}{x}^{\textcolor{magenta}{n}-1} \)
    \( \displaystyle \frac {d} {dx} e^ \textcolor{orange}{x} = e^ \textcolor{orange}{x} \)
    \( \displaystyle \frac {d} {dx} \textcolor{magenta}{b}^\textcolor{orange}{x} = \textcolor{magenta}{b}^\textcolor{orange}{x}ln(\textcolor{magenta}{b}) \) , where \( \, \textcolor{magenta}{b} > 0\) 
    \( \displaystyle \frac {d} {dx}  \ln(|\textcolor{orange}{x}|) = \displaystyle \frac {1} {\textcolor{orange}{x}} \) ,\( x \ne 0  \)
    \( \displaystyle \frac {d} {dx}  \log_\textcolor{magenta}{b}(|\textcolor{orange}{x}|) = \displaystyle \frac {1} {\textcolor{orange}{x} \, \ln(\textcolor{magenta}{b})}  \) , \( x \ne 0  \)
    \( \displaystyle \frac {d} {dx} \sin(\textcolor{orange}{x}) = \cos(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx}  \cos(\textcolor{orange}{x}) = -\sin(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx} \tan(\textcolor{orange}{x}) = \sec^2(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx}  \sec(\textcolor{orange}{x}) = \sec(\textcolor{orange}{x})tan(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx} \csc(\textcolor{orange}{x}) = -\csc(\textcolor{orange}{x})cot(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx}  \cot(\textcolor{orange}{x}) = -\csc^2(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx} \sin^{-1}(\textcolor{orange}{x}) = \displaystyle \frac {1} {\sqrt{1-\textcolor{orange}{x}^2}} \)
    \( \displaystyle \frac {d} {dx} \tan^{-1}(\textcolor{orange}{x}) = \displaystyle \frac {1} {1+\textcolor{orange}{x}^2} \)
    \( \displaystyle \frac {d} {dx}  \sec^{-1}(\textcolor{orange}{x})=  \displaystyle \frac {1} { |\textcolor{orange}{x}| \,\sqrt{\textcolor{orange}{x}^2-1}} \)
    \( \displaystyle \frac {d} {dx}  \cos^{-1}(\textcolor{orange}{x}) =- \displaystyle \frac {1} {\sqrt{1-\textcolor{orange}{x}^2}} \)
    \( \displaystyle \frac {d} {dx}  \cot^{-1}(\textcolor{orange}{x})=- \displaystyle \frac {1} {1+\textcolor{orange}{x}^2} \)
    \( \displaystyle \frac {d} {dx} \csc^{-1}(\textcolor{orange}{x}) = - \displaystyle \frac {1} { |\textcolor{orange}{x}| \,\sqrt{\textcolor{orange}{x}^2-1}} \)
    \( \displaystyle \frac {d} {dx} |\textcolor{orange}{x}| = sgn(\textcolor{orange}{x}) = \displaystyle \frac {\textcolor{orange}{x}} {|\textcolor{orange}{x}|} , x \ne 0\)