$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# Table of Derivatives

[ "stage:draft", "article:topic" ]

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

### Differentiation Rules

 Sum Rule $$\displaystyle \frac {d} {dx} (\textcolor{blue}{f(x)} + \textcolor{brown}{g (x)}) = (\textcolor{blue}{f(x)} + \textcolor{brown}{g (x)}) '= \textcolor{blue}{f'(x)} + \textcolor{brown}{g'(x)}$$ Constant Multiple Rule $$\displaystyle \frac {d} {dx} (c\textcolor{blue}{f(x)}) = (c\textcolor{blue}{f(x)})'= c\textcolor{blue}{f'(x)}$$ Product Rule $$\displaystyle \frac {d} {dx} (\textcolor{blue}{f(x)}\textcolor{brown}{g(x)}) = (\textcolor{blue}{f(x)}\textcolor{brown}{g(x)})'= \textcolor{blue}{f'(x)}\textcolor{brown}{g(x)} + \textcolor{blue}{f(x)}\textcolor{brown}{g'(x)}$$ $$\displaystyle \frac {d} {dx} (\displaystyle \frac {1} {\textcolor{blue}{f(x)}}) = -\displaystyle \frac {\textcolor{blue}{f'(x)}} {(\textcolor{blue}{f(x)})^2}$$ Quotient Rule $$\displaystyle \frac {d} {dx} \left(\displaystyle \frac {\textcolor{blue}{f(x)}} {\textcolor{brown}{g(x)}} \right) =\left(\displaystyle \frac {\textcolor{blue}{f(x)}} {\textcolor{brown}{g(x)}}\right)'=\displaystyle \frac {\textcolor{brown}{g(x)}\textcolor{blue}{f'(x)} - \textcolor{blue}{f(x)}\textcolor{brown}{g'(x)}} {(\textcolor{brown}{g(x)})^2}$$ Chain Rule $$\displaystyle \frac {d} {dx} \textcolor{blue}{f(}\textcolor{ brown }{g(x)}\textcolor{blue}{)}= \left(\textcolor{blue}{f(}\textcolor{ brown }{g(x)}\textcolor{blue}{)} \right)'= \textcolor{blue}{f'(}\textcolor{ brown }{g(x)}\textcolor{blue}{)}\textcolor{ brown }{g'(x)}$$

### Derivatives for Elementary Trancendental Functions

 $$\displaystyle \frac {d} {dx} \textcolor{orange}{x}^\textcolor{magenta}{n} = \textcolor{magenta}{n}\textcolor{orange}{x}^{\textcolor{magenta}{n}-1}$$ $$\displaystyle \frac {d} {dx} e^ \textcolor{orange}{x} = e^ \textcolor{orange}{x}$$ $$\displaystyle \frac {d} {dx} \textcolor{magenta}{b}^\textcolor{orange}{x} = \textcolor{magenta}{b}^\textcolor{orange}{x}ln(\textcolor{magenta}{b})$$ , where $$\, \textcolor{magenta}{b} > 0$$ $$\displaystyle \frac {d} {dx} \ln(|\textcolor{orange}{x}|) = \displaystyle \frac {1} {\textcolor{orange}{x}}$$ ,$$x \ne 0$$ $$\displaystyle \frac {d} {dx} \log_\textcolor{magenta}{b}(|\textcolor{orange}{x}|) = \displaystyle \frac {1} {\textcolor{orange}{x} \, \ln(\textcolor{magenta}{b})}$$ , $$x \ne 0$$ $$\displaystyle \frac {d} {dx} \sin(\textcolor{orange}{x}) = \cos(\textcolor{orange}{x})$$ $$\displaystyle \frac {d} {dx} \cos(\textcolor{orange}{x}) = -\sin(\textcolor{orange}{x})$$ $$\displaystyle \frac {d} {dx} \tan(\textcolor{orange}{x}) = \sec^2(\textcolor{orange}{x})$$ $$\displaystyle \frac {d} {dx} \sec(\textcolor{orange}{x}) = \sec(\textcolor{orange}{x})tan(\textcolor{orange}{x})$$ $$\displaystyle \frac {d} {dx} \csc(\textcolor{orange}{x}) = -\csc(\textcolor{orange}{x})cot(\textcolor{orange}{x})$$ $$\displaystyle \frac {d} {dx} \cot(\textcolor{orange}{x}) = -\csc^2(\textcolor{orange}{x})$$ $$\displaystyle \frac {d} {dx} \sin^{-1}(\textcolor{orange}{x}) = \displaystyle \frac {1} {\sqrt{1-\textcolor{orange}{x}^2}}$$ $$\displaystyle \frac {d} {dx} \tan^{-1}(\textcolor{orange}{x}) = \displaystyle \frac {1} {1+\textcolor{orange}{x}^2}$$ $$\displaystyle \frac {d} {dx} \sec^{-1}(\textcolor{orange}{x})= \displaystyle \frac {1} { |\textcolor{orange}{x}| \,\sqrt{\textcolor{orange}{x}^2-1}}$$ $$\displaystyle \frac {d} {dx} \cos^{-1}(\textcolor{orange}{x}) =- \displaystyle \frac {1} {\sqrt{1-\textcolor{orange}{x}^2}}$$ $$\displaystyle \frac {d} {dx} \cot^{-1}(\textcolor{orange}{x})=- \displaystyle \frac {1} {1+\textcolor{orange}{x}^2}$$ $$\displaystyle \frac {d} {dx} \csc^{-1}(\textcolor{orange}{x}) = - \displaystyle \frac {1} { |\textcolor{orange}{x}| \,\sqrt{\textcolor{orange}{x}^2-1}}$$ $$\displaystyle \frac {d} {dx} |\textcolor{orange}{x}| = sgn(\textcolor{orange}{x}) = \displaystyle \frac {\textcolor{orange}{x}} {|\textcolor{orange}{x}|} , x \ne 0$$