$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 3.E Exercises

[ "stage:draft", "article:topic", "license:ccbyncsa", "showtoc:yes" ]

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

#### Exercise $$\PageIndex{1}$$:

Let $$a, b, c \in \mathbb{Z}$$, such that $$a \equiv b (mod\,n).$$

Show that  $$ac=bc(mod\,n).$$

#### Exercise $$\PageIndex{2}$$:

Find the remainder when $$(201)(203)(205)(207)$$  is divided by $$13.$$

#### Exercise $$\PageIndex{3}$$:

Show that the sum of 2 odd integers is even.

#### Exercise $$\PageIndex{4}$$:

Given that February 14, 2018, is a Wednesday, what day of the week will February 14, 2090 be?

#### Exercise $$\PageIndex{5}$$:

Find the remainder when 81789  is divided by 28.

#### Exercise $$\PageIndex{6}$$:

Find the remainder,

1.  When $$3^{1798}$$ is divided by $$28.$$
2.  When $$2^{1798}$$ is divided by $$28.$$
3.  When $$7^{5453}$$ is divided by $$8.$$

#### Example $$\PageIndex{7}$$:

Given a positive integer $$x,$$ rearrange its digits to form another integer $$y.$$ Explain why $$x-y$$ is divisible by $$9.$$

#### Exercise $$\PageIndex{8}$$

Prove that for all integer $$n\geq 1,\,6$$ divides $$n^3-n.$$