Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 30 results
  • https://math.libretexts.org/Courses/College_of_Southern_Nevada/Calculus_(Hutchinson)/01%3A_Functions_and_Graphs_(Precalculus_Review)/1.02%3A_Basic_Classes_of_Functions
    Figure \PageIndex9: (a) For c>0, the graph of y=f(x)+c is a vertical shift up c units of the graph of y=f(x). (b) For c>0, the graph of y=f(x)c is a vertical shift down ...Figure \PageIndex9: (a) For c>0, the graph of y=f(x)+c is a vertical shift up c units of the graph of y=f(x). (b) For c>0, the graph of y=f(x)c is a vertical shift down c units of the graph of y=f(x). For c>0, the graph of f(x+c) is a shift of the graph of f(x) to the left c units; the graph of f(xc) is a shift of the graph of f(x) to the right c units.
  • https://math.libretexts.org/Courses/SUNY_Geneseo/Math_221_Calculus_1/01%3A_Functions_and_Graphs/1.03%3A_Basic_Classes_of_Functions
    We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define gene...We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental functions we examine later in this chapter. We finish the section with piecewise-defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.
  • https://math.libretexts.org/Courses/Mission_College/Math_3A%3A_Calculus_1_(Sklar)/01%3A_Functions_and_Graphs/1.02%3A_Basic_Classes_of_Functions
    We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define gene...We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental functions we examine later in this chapter. We finish the section with piecewise-defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.
  • https://math.libretexts.org/Courses/Laney_College/Math_3A%3A_Calculus_1_(Fall_2022)/01%3A_Functions_and_Graphs/1.03%3A_Basic_Classes_of_Functions
    We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define gene...We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental functions we examine later in this chapter. We finish the section with piecewise-defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.
  • https://math.libretexts.org/Courses/Reedley_College/Calculus_I_(Casteel)/01%3A_Functions_and_Graphs/1.02%3A_Basic_Classes_of_Functions
    We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define gene...We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental functions we examine later in this chapter. We finish the section with piecewise-defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.
  • https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2F1%3A_Functions_and_Graphs_(Review)/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2F1%3A_Functions_and_Graphs_(Review)%2F%2F1.2%3A_Basic_Classes_of_Functions
    For c>0, the graph of f(x+c) is a shift of the graph of f(x) to the left c units; the graph of f(xc) is a shift of the graph of f(x) to the right c units. For example, the...For c>0, the graph of f(x+c) is a shift of the graph of f(x) to the left c units; the graph of f(xc) is a shift of the graph of f(x) to the right c units. For example, the graph of the function f(x)=3x2 is the graph of y=x2 stretched vertically by a factor of 3, whereas the graph of f(x)=x2/3 is the graph of y=x2 compressed vertically by a factor of 3 (Figure \PageIndex8).
  • https://math.libretexts.org/Courses/Cosumnes_River_College/Math_370%3A_Precalculus/01%3A_Relations_and_Functions/1.04%3A_Function_Notation
    This section explains function notation, including how to interpret and evaluate functions expressed in this form. It covers the use of symbols like f(x) to denote functions, how to substitute values ...This section explains function notation, including how to interpret and evaluate functions expressed in this form. It covers the use of symbols like f(x) to denote functions, how to substitute values into functions, and how to read and write functions in different contexts. Examples are provided to illustrate these concepts, emphasizing the importance of understanding function notation for further study in Algebra.
  • https://math.libretexts.org/Courses/Monroe_Community_College/MTH_210_Calculus_I_(Professor_Dean)/1%3A_Functions_and_Graphs_(Review)/1.2%3A_Basic_Classes_of_Functions
    For c>0, the graph of f(x+c) is a shift of the graph of f(x) to the left c units; the graph of f(xc) is a shift of the graph of f(x) to the right c units. For example, the...For c>0, the graph of f(x+c) is a shift of the graph of f(x) to the left c units; the graph of f(xc) is a shift of the graph of f(x) to the right c units. For example, the graph of the function f(x)=3x2 is the graph of y=x2 stretched vertically by a factor of 3, whereas the graph of f(x)=x2/3 is the graph of y=x2 compressed vertically by a factor of 3 (Figure \PageIndex8).
  • https://math.libretexts.org/Courses/City_University_of_New_York/Calculus_I_(CUNY)/01%3A_Functions_and_Graphs/1.03%3A_Basic_Classes_of_Functions
    We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define gene...We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental functions we examine later in this chapter. We finish the section with piecewise-defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.
  • https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/01%3A_Functions_and_Graphs/1.02%3A_Basic_Classes_of_Functions
    We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define gene...We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental functions we examine later in this chapter. We finish the section with piecewise-defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.
  • https://math.libretexts.org/Courses/Chabot_College/MTH_1%3A_Calculus_I/01%3A_Functions_and_Graphs/1.03%3A_Basic_Classes_of_Functions
    We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define gene...We begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish them from the transcendental functions we examine later in this chapter. We finish the section with piecewise-defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from its initial form.

Support Center

How can we help?