Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 18 results
  • https://math.libretexts.org/Courses/Mission_College/Math_3A%3A_Calculus_I_(Kravets)/06%3A_Appendices/6.01%3A_B-_Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)
  • https://math.libretexts.org/Courses/Mission_College/Math_4A%3A_Multivariable_Calculus_v2_(Reed)/17%3A_Appendices/17.01%3A_Appendix_B-_Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)
  • https://math.libretexts.org/Courses/De_Anza_College/Calculus_III%3A_Series_and_Vector_Calculus/06%3A_Appendices/6.02%3A_B-_Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)
  • https://math.libretexts.org/Courses/Mission_College/Math_3A%3A_Calculus_1_(Sklar)/06%3A_Appendices/6.01%3A_B-_Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)
  • https://math.libretexts.org/Courses/SUNY_Geneseo/Math_222_Calculus_2/07%3A_Appendices/7.01%3A_B-_Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)
  • https://math.libretexts.org/Courses/Prince_Georges_Community_College/MAT_2410%3A_Calculus_(Open_Stax)_Novick/06%3A_Appendices/6.02%3A_B-_Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)
  • https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q3/06%3A_Appendices/6.02%3A_B-_Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)
  • https://math.libretexts.org/Courses/Cosumnes_River_College/Math_401%3A_Calculus_II_-_Integral_Calculus/07%3A_Appendices/7.03%3A_Table_of_Integrals
    39. \(\quad \displaystyle \int u^n\sin u\,du=−u^n\cos u+n \int u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle \int u^n\cos u\,du=u^n\sin u−n \int u^{n−1}\sin u\,du\) 108. \(\quad \displaystyle \int \df...39. \(\quad \displaystyle \int u^n\sin u\,du=−u^n\cos u+n \int u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle \int u^n\cos u\,du=u^n\sin u−n \int u^{n−1}\sin u\,du\) 108. \(\quad \displaystyle \int \dfrac{du}{u\sqrt{a+bu}}=\begin{cases} \dfrac{1}{\sqrt{a}}\ln \left|\dfrac{\sqrt{a+bu}−\sqrt{a}}{\sqrt{a+bu}+\sqrt{a}}\right|+C,\quad \text{if}\,a>0\\[4pt] \dfrac{\sqrt{2}}{\sqrt{−a}}\tan^{-1}\sqrt{\dfrac{a+bu}{−a}}+C,\quad \text{if}\,a<0 \end{cases}\)
  • https://math.libretexts.org/Courses/SUNY_Geneseo/Math_223_Calculus_3/06%3A_Appendices/6.B%3A__Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)
  • https://math.libretexts.org/Courses/Reedley_College/Calculus_I_(Casteel)/06%3A_Appendices/6.02%3A_B-_Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)
  • https://math.libretexts.org/Courses/Mission_College/MAT_3B_Calculus_II_(Kravets)/12%3A_Appendices/12.B%3A_Table_of_Integrals
    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\co...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 41. \(\quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}\)

Support Center

How can we help?