B- Table of Integrals
- Last updated
- Oct 20, 2021
- Save as PDF
- Page ID
- 88930
( \newcommand{\kernel}{\mathrm{null}\,}\)
Basic Integrals
1. \quad \displaystyle ∫u^n\,du=\frac{u^{n+1}}{n+1}+C,\quad n≠−1
2. \quad \displaystyle ∫\frac{du}{u} =\ln |u|+C
3. \quad \displaystyle ∫e^u\,du=e^u+C
4. \quad \displaystyle ∫a^u\,du=\frac{a^u}{\ln a}+C
5. \quad \displaystyle ∫\sin u\,du=−\cos u+C
6. \quad \displaystyle ∫\cos u\,du=\sin u+C
7. \quad \displaystyle ∫\sec^2u\,du=\tan u+C
8. \quad \displaystyle ∫\csc^2u\,du=−\cot u+C
9. \quad \displaystyle ∫\sec u\tan u\,du=\sec u+C
10. \quad \displaystyle ∫\csc u\cot u\,du=−\csc u+C
11. \quad \displaystyle ∫\tan u\,du=\ln |\sec u|+C
12. \quad \displaystyle ∫\cot u\,du=\ln |\sin u|+C
13. \quad \displaystyle ∫\sec u\,du=\ln |\sec u+\tan u|+C
14. \quad \displaystyle ∫\csc u\,du=\ln |\csc u−\cot u|+C
15. \quad \displaystyle ∫\frac{du}{\sqrt{a^2−u^2}}=\sin^{−1}\left(\frac{u}{a}\right)+C
16. \quad \displaystyle ∫\frac{du}{a^2+u^2}=\frac{1}{a}\tan^{−1}\left(\frac{u}{a}\right)+C
17. \quad \displaystyle ∫\frac{du}{u\sqrt{u^2−a^2}}=\frac{1}{a}\sec^{−1}\frac{|u|}{a}+C
Trigonometric Integrals
18. \quad \displaystyle ∫\sin^2u\,du=\frac{1}{2}u−\frac{1}{4}\sin 2u+C
19. \quad \displaystyle ∫\cos^2 u\,du=\frac{1}{2}u+\frac{1}{4}\sin 2u+C
20. \quad \displaystyle ∫\tan^2 u\,du=\tan u−u+C
21. \quad \displaystyle ∫\cot ^2 u\,du=−\cot u−u+C
22. \quad \displaystyle ∫\sin^3 u\,du=−\frac{1}{3}(2+\sin^2u)\cos u+C
23. \quad \displaystyle ∫\cos^3 u\,du=\frac{1}{3}(2+\cos^2 u)\sin u+C
24. \quad \displaystyle ∫\tan^3 u\,du=\frac{1}{2}\tan^2 u+\ln |\cos u|+C
25. \quad \displaystyle ∫\cot^3 u\,du=−\frac{1}{2}\cot^2 u−\ln |\sin u|+C
26. \quad \displaystyle ∫\sec^3 u\,du=\frac{1}{2}\sec u\tan u+\frac{1}{2}\ln |\sec u+\tan u|+C
27. \quad \displaystyle ∫\csc^3 u\,du=−\frac{1}{2}\csc u\cot u+\frac{1}{2}\ln |\csc u−\cot u|+C
28. \quad \displaystyle ∫\sin^n u\,du=\frac{-1}{n}\sin^{n−1}u\cos u+\frac{n−1}{n}∫\sin^{n−2}u\,du
29. \quad \displaystyle ∫\cos^n u\,du=\frac{1}{n}\cos^{n−1} u\sin u+\frac{n−1}{n}∫\cos^{n−2}u\,du
30. \quad \displaystyle ∫\tan^n u\,du=\frac{1}{n-1}\tan^{n−1} u−∫\tan^{n−2} u\,du
31. \quad \displaystyle ∫\cot^n u\,du=\frac{-1}{n-1}\cot^{n−1}u−∫\cot^{n−2}u\,du
32. \quad \displaystyle ∫\sec^n u\,du=\frac{1}{n-1}\tan u\sec^{n−2}u+\frac{n-2}{n-1}∫\sec^{n−2}u\,du
33. \quad \displaystyle ∫\csc^n u\,du=\frac{-1}{n-1}\cot u\csc^{n−2}u+\frac{n-2}{n-1}∫\csc^{n−2}u\,du
34. \quad \displaystyle ∫\sin au\sin bu\,du=\frac{\sin (a−b)u}{2(a−b)}−\frac{\sin (a+b)u}{2(a+b)}+C
35. \quad \displaystyle ∫\cos au\cos bu\,du=\frac{\sin (a−b)u}{2(a−b)}+\frac{\sin (a+b)u}{2(a+b)}+C
36. \quad \displaystyle ∫\sin au\cos bu\,du=−\frac{\cos (a−b)u}{2(a−b)}−\frac{\cos (a+b)u}{2(a+b)}+C
37. \quad \displaystyle ∫u\sin u\,du=\sin u−u\cos u+C
38. \quad \displaystyle ∫u\cos u\,du=\cos u+u\sin u+C
39. \quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du
40. \quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du
41. \quad \begin{align*} \displaystyle ∫\sin^n u\cos^m u\,du = −\frac{\sin^{n−1}u\cos^{m+1}u}{n+m}+\frac{n−1}{n+m}∫\sin^{n−2}u\cos^m u\,du \\[4pt] =\frac{\sin^{n+1}u\cos^{m−1}u}{n+m}+\frac{m−1}{n+m}∫\sin^n u\cos^{m−2}u \,du \end{align*}
Exponential and Logarithmic Integrals
42. \quad \displaystyle ∫ue^{au}\,du=\frac{1}{a^2}(au−1)e^{au}+C
43. \quad \displaystyle ∫u^ne^{au}\,du=\frac{1}{a}u^ne^{au}−\frac{n}{a}∫u^{n−1}e^{au}\,du
44. \quad \displaystyle ∫e^{au}\sin bu\,du=\frac{e^{au}}{a^2+b^2}(a\sin bu−b\cos bu)+C
45. \quad \displaystyle ∫e^{au}\cos bu\,du=\frac{e^{au}}{a^2+b^2}(a\cos bu+b\sin bu)+C
46. \quad \displaystyle ∫\ln u\,du=u\ln u−u+C
47. \quad \displaystyle ∫u^n\ln u\,du=\frac{u^{n+1}}{(n+1)^2}[(n+1)\ln u−1]+C
48. \quad \displaystyle ∫\frac{1}{u\ln u}\,du=\ln |\ln u|+C
Hyperbolic Integrals
49. \quad \displaystyle ∫\sinh u\,du=\cosh u+C
50. \quad \displaystyle ∫\cosh u\,du=\sinh u+C
51. \quad \displaystyle ∫\tanh u\,du=\ln \cosh u+C
52. \quad \displaystyle ∫\coth u\,du=\ln |\sinh u|+C
53. \quad \displaystyle ∫\text{sech}\,u\,du=\tan^{−1}|\sinh u|+C
54. \quad \displaystyle ∫\text{csch}\,u\,du=\ln ∣\tanh\frac{1}{2}u∣+C
55. \quad \displaystyle ∫\text{sech}^2 u\,du=\tanh \,u+C
56. \quad \displaystyle ∫\text{csch}^2 u\,du=−\coth \,u+C
57. \quad \displaystyle ∫\text{sech} \,u\tanh u\,du=−\text{sech} \,u+C
58. \quad \displaystyle ∫\text{csch} \,u\coth u\,du=−\text{csch} \,u+C
Inverse Trigonometric Integrals
59. \quad \displaystyle ∫\sin^{-1}u\,du=u\sin^{-1}u+\sqrt{1−u^2}+C
60. \quad \displaystyle ∫\cos^{-1}u\,du=u\cos^{-1}u−\sqrt{1−u^2}+C
61. \quad \displaystyle ∫\tan^{-1}u\,du=u\tan^{-1}u−\frac{1}{2}\ln (1+u^2)+C
62. \quad \displaystyle ∫u\sin^{-1}u\,du=\frac{2u^2−1}{4}\sin^{-1}u+\frac{u\sqrt{1−u^2}}{4}+C
63. \quad \displaystyle ∫u\cos^{-1}u\,du=\frac{2u^2−1}{4}\cos^{-1}u-\frac{u\sqrt{1−u^2}}{4}+C
64. \quad \displaystyle ∫u\tan^{-1}u\,du=\frac{u^2+1}{2}\tan^{-1}u−\frac{u}{2}+C
65. \quad \displaystyle ∫u^n\sin^{-1}u\,du=\frac{1}{n+1}\left[u^{n+1}\sin^{-1}u−∫\frac{u^{n+1}\,du}{\sqrt{1−u^2}}\right],\quad n≠−1
66. \quad \displaystyle ∫u^n\cos^{-1}u\,du=\frac{1}{n+1}\left[u^{n+1}\cos^{-1}u+∫\frac{u^{n+1}\,du}{\sqrt{1−u^2}}\right],\quad n≠−1
67. \quad \displaystyle ∫u^n\tan^{-1}u\,du=\frac{1}{n+1}\left[u^{n+1}\tan^{-1}u−∫\frac{u^{n+1}\,du}{1+u^2}\right],\quad n≠−1
Integrals Involving a2 + u2, a > 0
68. \quad \displaystyle ∫\sqrt{a^2+u^2}\,du=\frac{u}{2}\sqrt{a^2+u^2}+\frac{a^2}{2}\ln \left(u+\sqrt{a^2+u^2}\right)+C
69. \quad \displaystyle ∫u^2\sqrt{a^2+u^2}\,du=\frac{u}{8}(a^2+2u^2)\sqrt{a^2+u^2}−\frac{a^4}{8}\ln \left(u+\sqrt{a^2+u^2}\right)+C
70. \quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u}\,du=\sqrt{a^2+u^2}−a\ln \left|\frac{a+\sqrt{a^2+u^2}}{u}\right|+C
71. \quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u^2}\,du=−\frac{\sqrt{a^2+u^2}}{u}+\ln \left(u+\sqrt{a^2+u^2}\right)+C
72. \quad \displaystyle ∫\frac{du}{\sqrt{a^2+u^2}}=\ln \left(u+\sqrt{a^2+u^2}\right)+C
73. \quad \displaystyle ∫\frac{u^2}{\sqrt{a^2+u^2}}\,du=\frac{u}{2}\left(\sqrt{a^2+u^2}\right)−\frac{a^2}{2}\ln \left(u+\sqrt{a^2+u^2}\right)+C
74. \quad \displaystyle ∫\frac{du}{u\sqrt{a^2+u^2}}=\frac{−1}{a}\ln \left|\frac{\sqrt{a^2+u^2}+a}{u}\right|+C
75. \quad \displaystyle ∫\frac{du}{u^2\sqrt{a^2+u^2}}=−\frac{\sqrt{a^2+u^2}}{a^2u}+C
76. \quad \displaystyle ∫\frac{du}{\left(a^2+u^2\right)^{3/2}}=\frac{u}{a^2\sqrt{a^2+u^2}}+C
Integrals Involving u2 − a2, a > 0
77. \quad \displaystyle ∫\sqrt{u^2−a^2}\,du=\frac{u}{2}\sqrt{u^2−a^2}−\frac{a^2}{2}\ln \left|u+\sqrt{u^2−a^2}\right|+C
78. \quad \displaystyle ∫u^2\sqrt{u^2−a^2}\,du=\frac{u}{8}(2u^2−a^2)\sqrt{u^2−a^2}−\frac{a^4}{8}\ln \left|u+\sqrt{u^2−a^2}\right|+C
79. \quad \displaystyle ∫\frac{\sqrt{u^2−a^2}}{u}\,du=\sqrt{u^2−a^2}−a\cos^{-1}\frac{a}{|u|}+C
80. \quad \displaystyle ∫\frac{\sqrt{u^2−a^2}}{u^2}\,du=−\frac{\sqrt{u^2−a^2}}{u}+\ln \left|u+\sqrt{u^2−a^2}\right|+C
81. \quad \displaystyle ∫\frac{du}{\sqrt{u^2−a^2}}=\ln \left|u+\sqrt{u^2−a^2}\right|+C
82. \quad \displaystyle ∫\frac{u^2}{\sqrt{u^2−a^2}}\,du=\frac{u}{2}\sqrt{u^2−a^2}+\frac{a^2}{2}\ln \left|u+\sqrt{u^2−a^2}\right|+C
83. \quad \displaystyle ∫\frac{du}{u^2\sqrt{u^2−a^2}}=\frac{\sqrt{u^2−a^2}}{a^2u}+C
84. \quad \displaystyle ∫\frac{du}{(u^2−a^2)^{3/2}}=−\frac{u}{a^2\sqrt{u^2−a^2}}+C
Integrals Involving a2 − u2, a > 0
85. \quad \displaystyle ∫\sqrt{a^2-u^2}\,du=\frac{u}{2}\sqrt{a^2-u^2}+\frac{a^2}{2}\sin^{-1}\frac{u}{a}+C
86. \quad \displaystyle ∫u^2\sqrt{a^2-u^2}\,du=\frac{u}{8}(2u^2−a^2)\sqrt{a^2-u^2}+\frac{a^4}{8}\sin^{-1}\frac{u}{a}+C
87. \quad \displaystyle ∫\frac{\sqrt{a^2-u^2}}{u}\,du=\sqrt{a^2-u^2}−a\ln \left|\frac{a+\sqrt{a^2-u^2}}{u}\right|+C
88. \quad \displaystyle ∫\frac{\sqrt{a^2-u^2}}{u^2}\,du=\frac{−1}{u}\sqrt{a^2-u^2}−\sin^{-1}\frac{u}{a}+C
89. \quad \displaystyle ∫\frac{u^2}{\sqrt{a^2-u^2}}\,du=\frac{1}{2}\left(-u\sqrt{a^2-u^2}+a^2\sin^{-1}\frac{u}{a}\right)+C
90. \quad \displaystyle ∫\frac{du}{u\sqrt{a^2-u^2}}=−\frac{1}{a}\ln \left|\frac{a+\sqrt{a^2-u^2}}{u}\right|+C
91. \quad \displaystyle ∫\frac{du}{u^2\sqrt{a^2-u^2}}=−\frac{1}{a^2u}\sqrt{a^2-u^2}+C
92. \quad \displaystyle ∫\left(a^2−u^2\right)^{3/2}\,du=−\frac{u}{8}\left(2u^2−5a^2\right)\sqrt{a^2-u^2}+\frac{3a^4}{8}\sin^{-1}\frac{u}{a}+C
93. \quad \displaystyle ∫\frac{du}{(a^2−u^2)^{3/2}}=−\frac{u}{a^2\sqrt{a^2−u^2}}+C
Integrals Involving 2au − u2, a > 0
94. \quad \displaystyle ∫\sqrt{2au−u^2}\,du=\frac{u−a}{2}\sqrt{2au−u^2}+\frac{a^2}{2}\cos^{-1}\left(\frac{a−u}{a}\right)+C
95. \quad \displaystyle ∫\frac{du}{\sqrt{2au−u^2}}=\cos^{-1}\left(\frac{a−u}{a}\right)+C
96. \quad \displaystyle ∫u\sqrt{2au−u^2}\,du=\frac{2u^2−au−3a^2}{6}\sqrt{2au−u^2}+\frac{a^3}{2}\cos^{-1}\left(\frac{a−u}{a}\right)+C
97. \quad \displaystyle ∫\frac{du}{u\sqrt{2au−u^2}}=−\frac{\sqrt{2au−u^2}}{au}+C
Integrals Involving a + bu, a ≠ 0
98. \quad \displaystyle ∫\frac{u}{a+bu}\,du=\frac{1}{b^2}(a+bu−a\ln |a+bu|)+C
99. \quad \displaystyle ∫\frac{u^2}{a+bu}\,du=\frac{1}{2b^3}\left[(a+bu)^2−4a(a+bu)+2a^2\ln |a+bu|\right]+C
100. \quad \displaystyle ∫\frac{du}{u(a+bu)}=\frac{1}{a}\ln \left|\frac{u}{a+bu}\right|+C
101. \quad \displaystyle ∫\frac{du}{u^2(a+bu)}=−\frac{1}{au}+\frac{b}{a^2}\ln \left|\frac{a+bu}{u}\right|+C
102. \quad \displaystyle ∫\frac{u}{(a+bu)^2}\,du=\frac{a}{b^2(a+bu)}+\frac{1}{b^2}\ln |a+bu|+C
103. \quad \displaystyle ∫\frac{u}{u(a+bu)^2}\,du=\frac{1}{a(a+bu)}−\frac{1}{a^2}\ln \left|\frac{a+bu}{u}\right|+C
104. \quad \displaystyle ∫\frac{u^2}{(a+bu)^2}\,du=\frac{1}{b^3}\left(a+bu−\frac{a^2}{a+bu}−2a\ln |a+bu|\right)+C
105. \quad \displaystyle ∫u\sqrt{a+bu}\,du=\frac{2}{15b^2}(3bu−2a)(a+bu)^{3/2}+C
106. \quad \displaystyle ∫\frac{u}{\sqrt{a+bu}}\,du=\frac{2}{3b^2}(bu−2a)\sqrt{a+bu}+C
107. \quad \displaystyle ∫\frac{u^2}{\sqrt{a+bu}}\,du=\frac{2}{15b^3}(8a^2+3b^2u^2−4abu)\sqrt{a+bu}+C
108. \quad \displaystyle ∫\frac{du}{u\sqrt{a+bu}}=\begin{cases} \frac{1}{\sqrt{a}}\ln \left|\frac{\sqrt{a+bu}−\sqrt{a}}{\sqrt{a+bu}+\sqrt{a}}\right|+C,\quad \text{if}\,a>0\\[4pt] \frac{\sqrt{2}}{\sqrt{−a}}\tan^{-1}\sqrt{\frac{a+bu}{−a}}+C,\quad \text{if}\,a<0 \end{cases}
109. \quad \displaystyle ∫\frac{\sqrt{a+bu}}{u}\,du=2\sqrt{a+bu}+a∫\frac{du}{u\sqrt{a+bu}}
110. \quad \displaystyle ∫\frac{\sqrt{a+bu}}{u^2}\,du=−\frac{\sqrt{a+bu}}{u}+\frac{b}{2}∫\frac{du}{u\sqrt{a+bu}}
111. \quad \displaystyle ∫u^n\sqrt{a+bu}\,du=\frac{2}{b(2n+3)}\left[u^n(a+bu)^{3/2}−na∫u^{n−1}\sqrt{a+bu}\,du\right]
112. \quad \displaystyle ∫\frac{u^n}{\sqrt{a+bu}}\,du=\frac{2u^n\sqrt{a+bu}}{b(2n+1)}−\frac{2na}{b(2n+1)}∫\frac{u^{n−1}}{\sqrt{a+bu}}\,du
113. \quad \displaystyle ∫\frac{du}{u^n\sqrt{a+bu}}=−\frac{\sqrt{a+bu}}{a(n−1)u^{n−1}}−\frac{b(2n−3)}{2a(n−1)}∫\frac{du}{u^{n-1}\sqrt{a+bu}}