B- Table of Integrals Last updated Oct 20, 2021 Save as PDF A- Table of Derivatives Back Matter Page ID88930 OpenStaxOpenStax ( \newcommand{\kernel}{\mathrm{null}\,}\) Basic Integrals 1. ∫undu=un+1n+1+C,n≠−1 2. ∫duu=ln|u|+C 3. ∫eudu=eu+C 4. ∫audu=aulna+C 5. ∫sinudu=−cosu+C 6. ∫cosudu=sinu+C 7. ∫sec2udu=tanu+C 8. ∫csc2udu=−cotu+C 9. ∫secutanudu=secu+C 10. ∫cscucotudu=−cscu+C 11. ∫tanudu=ln|secu|+C 12. ∫cotudu=ln|sinu|+C 13. ∫secudu=ln|secu+tanu|+C 14. ∫cscudu=ln|cscu−cotu|+C 15. ∫dua2−u2=sin−1(ua)+C 16. ∫dua2+u2=1atan−1(ua)+C 17. ∫duuu2−a2=1asec−1|u|a+C Trigonometric Integrals 18. ∫sin2udu=12u−14sin2u+C 19. ∫cos2udu=12u+14sin2u+C 20. ∫tan2udu=tanu−u+C 21. ∫cot2udu=−cotu−u+C 22. ∫sin3udu=−13(2+sin2u)cosu+C 23. ∫cos3udu=13(2+cos2u)sinu+C 24. ∫tan3udu=12tan2u+ln|cosu|+C 25. ∫cot3udu=−12cot2u−ln|sinu|+C 26. ∫sec3udu=12secutanu+12ln|secu+tanu|+C 27. ∫csc3udu=−12cscucotu+12ln|cscu−cotu|+C 28. ∫sinnudu=−1nsinn−1ucosu+n−1n∫sinn−2udu 29. ∫cosnudu=1ncosn−1usinu+n−1n∫cosn−2udu 30. ∫tannudu=1n−1tann−1u−∫tann−2udu 31. ∫cotnudu=−1n−1cotn−1u−∫cotn−2udu 32. ∫secnudu=1n−1tanusecn−2u+n−2n−1∫secn−2udu 33. ∫cscnudu=−1n−1cotucscn−2u+n−2n−1∫cscn−2udu 34. ∫sinausinbudu=sin(a−b)u2(a−b)−sin(a+b)u2(a+b)+C 35. ∫cosaucosbudu=sin(a−b)u2(a−b)+sin(a+b)u2(a+b)+C 36. ∫sinaucosbudu=−cos(a−b)u2(a−b)−cos(a+b)u2(a+b)+C 37. ∫usinudu=sinu−ucosu+C 38. ∫ucosudu=cosu+usinu+C 39. ∫unsinudu=−uncosu+n∫un−1cosudu 40. ∫uncosudu=unsinu−n∫un−1sinudu 41. Erroneous nesting of equation structuresErroneous nesting of equation structures Exponential and Logarithmic Integrals 42. ∫ueaudu=1a2(au−1)eau+C 43. ∫uneaudu=1auneau−na∫un−1eaudu 44. ∫eausinbudu=eaua2+b2(asinbu−bcosbu)+C 45. ∫eaucosbudu=eaua2+b2(acosbu+bsinbu)+C 46. ∫lnudu=ulnu−u+C 47. ∫unlnudu=un+1(n+1)2[(n+1)lnu−1]+C 48. ∫1ulnudu=ln|lnu|+C Hyperbolic Integrals 49. ∫sinhudu=coshu+C 50. ∫coshudu=sinhu+C 51. ∫tanhudu=lncoshu+C 52. ∫cothudu=ln|sinhu|+C 53. ∫sechudu=tan−1|sinhu|+C 54. ∫cschudu=ln∣tanh12u∣+C 55. ∫sech2udu=tanhu+C 56. ∫csch2udu=−cothu+C 57. ∫sechutanhudu=−sechu+C 58. ∫cschucothudu=−cschu+C Inverse Trigonometric Integrals 59. ∫sin−1udu=usin−1u+1−u2+C 60. ∫cos−1udu=ucos−1u−1−u2+C 61. ∫tan−1udu=utan−1u−12ln(1+u2)+C 62. ∫usin−1udu=2u2−14sin−1u+u1−u24+C 63. ∫ucos−1udu=2u2−14cos−1u−u1−u24+C 64. ∫utan−1udu=u2+12tan−1u−u2+C 65. ∫unsin−1udu=1n+1[un+1sin−1u−∫un+1du1−u2],n≠−1 66. ∫uncos−1udu=1n+1[un+1cos−1u+∫un+1du1−u2],n≠−1 67. ∫untan−1udu=1n+1[un+1tan−1u−∫un+1du1+u2],n≠−1 Integrals Involving a2 + u2, a > 0 68. ∫a2+u2du=u2a2+u2+a22ln(u+a2+u2)+C 69. ∫u2a2+u2du=u8(a2+2u2)a2+u2−a48ln(u+a2+u2)+C 70. ∫a2+u2udu=a2+u2−aln|a+a2+u2u|+C 71. ∫a2+u2u2du=−a2+u2u+ln(u+a2+u2)+C 72. ∫dua2+u2=ln(u+a2+u2)+C 73. ∫u2a2+u2du=u2(a2+u2)−a22ln(u+a2+u2)+C 74. ∫duua2+u2=−1aln|a2+u2+au|+C 75. ∫duu2a2+u2=−a2+u2a2u+C 76. ∫du(a2+u2)3/2=ua2a2+u2+C Integrals Involving u2 − a2, a > 0 77. ∫u2−a2du=u2u2−a2−a22ln|u+u2−a2|+C 78. ∫u2u2−a2du=u8(2u2−a2)u2−a2−a48ln|u+u2−a2|+C 79. ∫u2−a2udu=u2−a2−acos−1a|u|+C 80. ∫u2−a2u2du=−u2−a2u+ln|u+u2−a2|+C 81. ∫duu2−a2=ln|u+u2−a2|+C 82. ∫u2u2−a2du=u2u2−a2+a22ln|u+u2−a2|+C 83. ∫duu2u2−a2=u2−a2a2u+C 84. ∫du(u2−a2)3/2=−ua2u2−a2+C Integrals Involving a2 − u2, a > 0 85. ∫a2−u2du=u2a2−u2+a22sin−1ua+C 86. ∫u2a2−u2du=u8(2u2−a2)a2−u2+a48sin−1ua+C 87. ∫a2−u2udu=a2−u2−aln|a+a2−u2u|+C 88. ∫a2−u2u2du=−1ua2−u2−sin−1ua+C 89. ∫u2a2−u2du=12(−ua2−u2+a2sin−1ua)+C 90. ∫duua2−u2=−1aln|a+a2−u2u|+C 91. ∫duu2a2−u2=−1a2ua2−u2+C 92. ∫(a2−u2)3/2du=−u8(2u2−5a2)a2−u2+3a48sin−1ua+C 93. ∫du(a2−u2)3/2=−ua2a2−u2+C Integrals Involving 2au − u2, a > 0 94. ∫2au−u2du=u−a22au−u2+a22cos−1(a−ua)+C 95. ∫du2au−u2=cos−1(a−ua)+C 96. ∫u2au−u2du=2u2−au−3a262au−u2+a32cos−1(a−ua)+C 97. ∫duu2au−u2=−2au−u2au+C Integrals Involving a + bu, a ≠ 0 98. ∫ua+budu=1b2(a+bu−aln|a+bu|)+C 99. ∫u2a+budu=12b3[(a+bu)2−4a(a+bu)+2a2ln|a+bu|]+C 100. ∫duu(a+bu)=1aln|ua+bu|+C 101. ∫duu2(a+bu)=−1au+ba2ln|a+buu|+C 102. ∫u(a+bu)2du=ab2(a+bu)+1b2ln|a+bu|+C 103. ∫uu(a+bu)2du=1a(a+bu)−1a2ln|a+buu|+C 104. ∫u2(a+bu)2du=1b3(a+bu−a2a+bu−2aln|a+bu|)+C 105. ∫ua+budu=215b2(3bu−2a)(a+bu)3/2+C 106. ∫ua+budu=23b2(bu−2a)a+bu+C 107. ∫u2a+budu=215b3(8a2+3b2u2−4abu)a+bu+C 108. ∫duua+bu={1aln|a+bu−aa+bu+a|+C,ifa>02−atan−1a+bu−a+C,ifa<0 109. ∫a+buudu=2a+bu+a∫duua+bu 110. ∫a+buu2du=−a+buu+b2∫duua+bu 111. ∫una+budu=2b(2n+3)[un(a+bu)3/2−na∫un−1a+budu] 112. ∫una+budu=2una+bub(2n+1)−2nab(2n+1)∫un−1a+budu 113. ∫duuna+bu=−a+bua(n−1)un−1−b(2n−3)2a(n−1)∫duun−1a+bu