Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 19 results
  • https://math.libretexts.org/Courses/Hartnell_College/MATH_25%3A_PreCalculus_(Abramson_OpenStax)/07%3A_Introduction_to_Calculus/7.06%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/SUNY_Geneseo/Math_221_Calculus_1/03%3A_Derivatives/3.02%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/Prince_Georges_Community_College/MAT_2410%3A_Calculus_1_(Beck)/03%3A_Derivatives/3.02%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/Reedley_College/Calculus_I_(Casteel)/03%3A_Derivatives/3.01%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/Mission_College/Math_3A%3A_Calculus_I_(Kravets)/03%3A_Derivatives/3.01%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/City_University_of_New_York/Calculus_I_(CUNY)/03%3A_Derivatives/3.02%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/Monroe_Community_College/MTH_210_Calculus_I_(Seeburger)/03%3A_Derivatives/3.01%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/Laney_College/Math_3A%3A_Calculus_1_(Fall_2022)/03%3A_Derivatives/3.02%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/Prince_Georges_Community_College/MAT_2410%3A_Calculus_(Open_Stax)_Novick/03%3A_Derivatives/3.02%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Nguyen)/03%3A_Derivatives/3.02%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/College_of_Southern_Nevada/Calculus_(Hutchinson)/03%3A_Differentiation/3.01%3A_Defining_the_Derivative
    In Figure \PageIndex3a we see that, as the values of x approach a, the slopes of the secant lines provide better estimates of the rate of change of the function at a. As the interval...In Figure \PageIndex3a we see that, as the values of x approach a, the slopes of the secant lines provide better estimates of the rate of change of the function at a. As the intervals become narrower, the graph of the function and its tangent line appear to coincide, making the values on the tangent line a good approximation to the values of the function for choices of x close to 1.

Support Center

How can we help?