Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

5.6: Inhomogeneous equations


\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

Consider a rod of length \(2\)m, laterally insulated (heat only flows inside the rod). Initially the temperature \(u\) is \[\frac{1}{k}\sin\left( \frac{\pi x}{2} \right) + 500 \text{ K}.\] The left and right ends are both attached to a thermostat, and the temperature at the left side is fixed at a temperature of \(500\text{ K}\) and the right end at \(100\text{ K}\). There is also a heater attached to the rod that adds a constant heat of \(\sin\left( \frac{\pi x}{2}\right)\) to the rod. The differential equation describing this is inhomogeneous

\[\begin{aligned} \dfrac{\partial}{\partial t} u &=& k \dfrac{\partial^2}{\partial x^2} u + \sin\left(\frac{\pi x}{2}\right),\nonumber\\ u(0,t) &=& 500,\nonumber\\ u(2,t) &=& 100,\nonumber\\ u(x,0) &=& \frac{1}{k}\sin\left( \frac{\pi x}{2} \right) + 500.\end{aligned}\]

ince the inhomogeneity is time-independent we write \[u(x,t) = v(x,t) + h(x),\] where \(h\) will be determined so as to make \(v\) satisfy a homogeneous equation. Substituting this form, we find

\[\dfrac{\partial}{\partial t} v = k \dfrac{\partial^2}{\partial x^2} v + k h'' + \sin\left( \frac{\pi x}{2} \right).\] To make the equation for \(v\) homogeneous we require \[h''(x) = - \frac{1}{k}\sin\left( \frac{\pi x}{2} \right),\]

which has the solution

\[h(x) = C_1 x + C_2 + \frac{4}{k\pi^2}\sin\left( \frac{\pi x}{2} \right).\]

At the same time we let \(h\) carry the boundary conditions, \(h(0)=500\), \(h(2)=100\), and thus \[h(x) = -{200} x + 500 + \frac{4}{k\pi^2}\sin\left( \frac{\pi x}{2} \right).\] The function \(v\) satisfies

\[\begin{aligned} \dfrac{\partial}{\partial t} v &=& k \dfrac{\partial^2}{\partial x^2} v, \nonumber\\ v(0,t) & = & v(\pi,t) = 0, \nonumber\\ v(x,0) & = & u(x,0) - h(x) = {200} x.\end{aligned}\]

his is a problem of a type that we have seen before. By separation of variables we find

\[v(x,t) = \sum_{n=1}^\infty b_n \exp (- \frac{n^2\pi^2}{4}kt) \sin \frac{n\pi}{2}x.\]

The initial condition gives

\[\sum_{n=1}^\infty b_n \sin nx = {200} x.\] from which we find \[b_n = (-1)^{n+1} \frac{800}{n\pi}.\]

And thus

\[u(x,t) = -\frac{200} x + 500 + \frac{4}{\pi^2 k} \sin \left(\frac{\pi x}{2}\right) + \frac{800}{\pi} \sum_{n=1}^\infty \frac{(-1)^n}{n+1} \sin \left(\frac{\pi nx}{2}\right) e^{-k (n \pi/2)^2 t}. \label{eq:imhomsol}\]

Note: as \(t\rightarrow \infty\), \(u(x,t) \rightarrow -\frac{400}{\pi} x + 500 + \frac{\sin \frac{\pi}{2}x}{k}\). As can be seen in Fig. [fig:Inhomgen] this approach is quite rapid – we have chosen \(k=1/500\) in that figure, and summed over the first 60 solutions.


 Time dependence of the solution to the inhomogeneous equation ()