Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

3.2.1: Quasilinear Elliptic Equations

  • Page ID
    2351
  • [ "article:topic" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    There is a large class of quasilinear equations such that the associated characteristic equation has no solution \(\chi\), \(\nabla\chi\not=0\).

    Set
    $$
    U=\{(x,z,p):\ x\in\Omega,\ z\in\mathbb{R}^1,\ p\in\mathbb{R}\}.
    $$

    Definition. The quasilinear equation (3.2.1) is called elliptic if the matrix \((a^{ij}(x,z,p))\) is positive definite for each \((x,z,p)\in U\).

    Assume equation  (3.2.1) is elliptic and let \(\lambda(x,z,p)\) be the minimum and \(\Lambda(x,z,p)\) the maximum of the eigenvalues of \((a^{ij})\), then
    $$
    0<\lambda(x,z,p)|\zeta|^2\le\sum_{i,j=1}^na^{ij}(x,z,p)\zeta_i\zeta_j\le  \Lambda(x,z,p)|\zeta|^2
    $$
    for all \(\zeta\in\mathbb{R}\).

    Definition. Equation  (3.2.1) is called uniformly elliptic if \(\Lambda/\lambda\) is uniformly bounded in \(U\).

    An important class of  elliptic equations which are not uniformly elliptic (non-uniformly elliptic) is
    \begin{equation}
    \label{nonuniform}\tag{3.2.1.1}
    \sum_{i=1}^n\frac{\partial}{\partial x_i}\left(\frac{u_{x_i}}{\sqrt{1+|\nabla u|^2}}\right)+\mbox{lower order terms}=0.
    \end{equation}
    The main part is the minimal surface operator (left hand side of the minimal surface equation). The coefficients \(a^{ij}\) are
    $$
    a^{ij}(x,z,p)=\left(1+|p|^2\right)^{-1/2}\left(\delta_{ij}-\frac{p_ip_j}{1+|p|^2}\right),
    $$
    \(\delta_{ij}\) denotes the Kronecker delta symbol. It follows that
    $$
    \lambda=\frac{1}{\left(1+|p|^2\right)^{3/2}},\ \ \Lambda=\frac{1}{\left(1+|p|^2\right)^{1/2}}.
    $$
    Thus equation (\ref{nonuniform}) is not uniformly elliptic.

    The behavior of solutions of uniformly elliptic equations is similar to linear elliptic equations in contrast to the behavior of solutions of non-uniformly elliptic equations.
    Typical examples for non-uniformly elliptic equations are the minimal surface equation and the capillary equation.

    Contributors