Skip to main content
Mathematics LibreTexts

3.3: Systems of First Order

  • Page ID
    2144
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Consider the quasilinear system

    \begin{equation}
    \label{syst1}
    \sum_{k=1}^nA^k(x,u)u_{u_k}+b(x,u)=0,
    \end{equation}

    where \(A^k\) are \(m\times m\)-matrices, sufficiently regular with respect to their arguments, and

    $$
    u=\left(\begin{array}{c}
    u_1\\ \vdots\\u_m
    \end{array}\right),\ \
    u_{x_k}=\left(\begin{array}{c}
    u_{1,x_k}\\ \vdots\\u_{m,x_k}
    \end{array}\right),\ \
    b=\left(\begin{array}{c}
    b_1\\ \vdots\\b_m
    \end{array}\right).
    \]

    We ask the same question as above: can we calculate all derivatives of \(u\) in a neighborhood of a given hypersurface \(\mathcal{S}\) in \(\mathbb{R}\) defined by \(\chi(x)=0\), \(\nabla\chi\not=0\), provided \(u(x)\) is given on \(\mathcal{S}\)?

    For an answer we map \(\mathcal{S}\) onto a flat surface \(\mathcal{S}_0\) by using the mapping \(\lambda=\lambda(x)\) of Section 3.1 and write equation (\ref{syst1}) in new coordinates. Set \(v(\lambda)=u(x(\lambda))\), then

    $$\sum_{k=1}^nA^k(x,u)\chi_{x_k}v_{\lambda_n}=\mbox{terms known on}\ \mathcal{S}_0.\]

    We can solve this system with respect to \(v_{\lambda_n}\), provided that

    $$\det\left(\sum_{k=1}^nA^k(x,u)\chi_{x_k}\right)\not=0\]

    on \(\mathcal{S}\).

    Definition. Equation

    $$\det\left(\sum_{k=1}^nA^k(x,u)\chi_{x_k}\right)=0\]

    is called characteristic equation associated to equation (\ref{syst1}) and a surface \({\mathcal{S}}\): \(\chi(x)=0\), defined by a solution \(\chi\), \(\nabla\chi\not=0\), of this characteristic equation is said to be characteristic surface.

    Set

    $$C(x,u,\zeta)=\det\left(\sum_{k=1}^nA^k(x,u)\zeta_k\right)\]

    for \(\zeta_k\in\mathbb{R}\).

    Definition.

    1. The system (\ref{syst1}) is hyperbolic at \((x,u(x))\) if there is a regular linear mapping \(\zeta=Q\eta\), where \(\eta=(\eta_1,\ldots,\eta_{n-1},\kappa)\), such that there exists \(m\) {\it real} roots \(\kappa_k=\kappa_k(x,u(x),\eta_1,\ldots,\eta_{n-1})\), \(k=1,\ldots,m\), of $$ D(x,u(x),\eta_1,\ldots,\eta_{n-1},\kappa)=0 $$ for all \((\eta_1,\ldots,\eta_{n-1})\), where $$ D(x,u(x),\eta_1,\ldots,\eta_{n-1},\kappa)=C(x,u(x),x,Q\eta).$$
    2. System (\ref{syst1}) is parabolic if there exists a regular linear mapping \(\zeta=Q\eta\) such that \(D\) is independent of \(\kappa\), that is, \(D\) depends on less than \(n\) parameters.
    3. System (\ref{syst1}) is elliptic if \(C(x,u,\zeta)=0\) only if \(\zeta=0\).

    Remark. In the elliptic case all derivatives of the solution can be calculated from the given data and the given equation.

    Contributors and Attributions


    This page titled 3.3: Systems of First Order is shared under a not declared license and was authored, remixed, and/or curated by Erich Miersemann.

    • Was this article helpful?