3.3: Systems of First Order
- Page ID
- 2144
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Consider the quasilinear system
\begin{equation}
\label{syst1}
\sum_{k=1}^nA^k(x,u)u_{u_k}+b(x,u)=0,
\end{equation}
where \(A^k\) are \(m\times m\)-matrices, sufficiently regular with respect to their arguments, and
$$
u=\left(\begin{array}{c}
u_1\\ \vdots\\u_m
\end{array}\right),\ \
u_{x_k}=\left(\begin{array}{c}
u_{1,x_k}\\ \vdots\\u_{m,x_k}
\end{array}\right),\ \
b=\left(\begin{array}{c}
b_1\\ \vdots\\b_m
\end{array}\right).
\]
We ask the same question as above: can we calculate all derivatives of \(u\) in a neighborhood of a given hypersurface \(\mathcal{S}\) in \(\mathbb{R}\) defined by \(\chi(x)=0\), \(\nabla\chi\not=0\), provided \(u(x)\) is given on \(\mathcal{S}\)?
For an answer we map \(\mathcal{S}\) onto a flat surface \(\mathcal{S}_0\) by using the mapping \(\lambda=\lambda(x)\) of Section 3.1 and write equation (\ref{syst1}) in new coordinates. Set \(v(\lambda)=u(x(\lambda))\), then
$$\sum_{k=1}^nA^k(x,u)\chi_{x_k}v_{\lambda_n}=\mbox{terms known on}\ \mathcal{S}_0.\]
We can solve this system with respect to \(v_{\lambda_n}\), provided that
$$\det\left(\sum_{k=1}^nA^k(x,u)\chi_{x_k}\right)\not=0\]
on \(\mathcal{S}\).
Definition. Equation
$$\det\left(\sum_{k=1}^nA^k(x,u)\chi_{x_k}\right)=0\]
is called characteristic equation associated to equation (\ref{syst1}) and a surface \({\mathcal{S}}\): \(\chi(x)=0\), defined by a solution \(\chi\), \(\nabla\chi\not=0\), of this characteristic equation is said to be characteristic surface.
Set
$$C(x,u,\zeta)=\det\left(\sum_{k=1}^nA^k(x,u)\zeta_k\right)\]
for \(\zeta_k\in\mathbb{R}\).
Definition.
- The system (\ref{syst1}) is hyperbolic at \((x,u(x))\) if there is a regular linear mapping \(\zeta=Q\eta\), where \(\eta=(\eta_1,\ldots,\eta_{n-1},\kappa)\), such that there exists \(m\) {\it real} roots \(\kappa_k=\kappa_k(x,u(x),\eta_1,\ldots,\eta_{n-1})\), \(k=1,\ldots,m\), of $$ D(x,u(x),\eta_1,\ldots,\eta_{n-1},\kappa)=0 $$ for all \((\eta_1,\ldots,\eta_{n-1})\), where $$ D(x,u(x),\eta_1,\ldots,\eta_{n-1},\kappa)=C(x,u(x),x,Q\eta).$$
- System (\ref{syst1}) is parabolic if there exists a regular linear mapping \(\zeta=Q\eta\) such that \(D\) is independent of \(\kappa\), that is, \(D\) depends on less than \(n\) parameters.
- System (\ref{syst1}) is elliptic if \(C(x,u,\zeta)=0\) only if \(\zeta=0\).
Remark. In the elliptic case all derivatives of the solution can be calculated from the given data and the given equation.
Contributors and Attributions
Integrated by Justin Marshall.