Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

6.4.1: Fourier's Method

  • Page ID
    2183
  • [ "article:topic", "Fourier\'s Method", "Diffusion in a tube" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Separation of variables ansatz \(c(x,t)=v(x)w(t)\) leads to the eigenvalue problem, see the arguments of Section 4.5,

    \begin{eqnarray}
    \label{ewpar1}\tag{6.4.1.1}
    -\triangle v&=&\lambda v\ \ \mbox{in}\ \Omega\\
    \label{ewpar2} \tag{6.4.1.2}
    \frac{\partial v}{\partial n}&=&0\ \ \mbox{on}\ \partial\Omega,
    \end{eqnarray}

    and to the ordinary differential equation

    \begin{equation} \tag{6.4.1.3}
    \label{ewpar3}
    w'(t)+\lambda Dw(t)=0.
    \end{equation}

    Assume \(\Omega\) is bounded and \(\partial\Omega\) sufficiently regular, then the eigenvalues of (\ref{ewpar1}), (\ref{ewpar2}) are countable and

    $$0=\lambda_0<\lambda_1\le\lambda_2\le\ldots\to\infty.$$

    Let \(v_j(x)\) be a complete system of orthonormal (in \(L^2(\Omega)\)) eigenfunctions.
    Solutions of (\ref{ewpar3})  are

    $$w_j(t)=C_je^{-D\lambda_jt},$$

    where \(C_j\) are arbitrary constants.

    According to the superposition principle,

    $$c_N(x,t):=\sum_{j=0}^N C_je^{-D\lambda_jt}v_j(x)$$

    is a solution of the differential equation (\ref{ewpar1}) and

    $$c(x,t):=\sum_{j=0}^\infty C_je^{-D\lambda_jt}v_j(x),$$

    with

    $$C_j=\int_\Omega\ c_0(x)v_j(x)\ dx,$$

    is a formal solution of the initial-boundary value problem (6.4.1)-(6.4.3).

    Diffusion in a tube

    Consider a solution in a tube, see Figure 6.4.1.1.

    Figure 6.4.1.1: Diffusion in a tube

    Assume the initial concentration \(c_0(x_1,x_2,x_3)\) of the substrate in a solution  is constant if \(x_3=const.\) It follows from a uniqueness result below that the solution of the initial-boundary value problem \(c(x_1,x_2,x_3,t)\) is independent of \(x_1\) and \(x_2\).

    Set \(z=x_3\), then the above initial-boundary value problem reduces to

    \begin{eqnarray*}
    c_t&=&Dc_{zz}\\
    c(z,0)&=&c_0(z)\\
    c_z&=&0,\ \ z=0,\ z=l.
    \end{eqnarray*}

    The (formal) solution is

    $$c(z,t)=\sum_{n=0}^\infty C_ne^{-D\left(\frac{\pi}{l}n\right)^2 t}\cos\left(\frac{\pi}{l}nz\right),$$

    where

    \begin{eqnarray*}
    C_0&=&\frac{1}{l}\int_0^l\ c_0(z)\ dz\\
    C_n&=&\frac{2}{l}\int_0^l\ c_0(z)\cos\left(\frac{\pi}{l}nz\right)\ dz,\ \ n\ge1.
    \end{eqnarray*}

    Contributors