$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 3.5E: Real Zeros of Polynomials (Exercises)

[ "article:topic", "license:ccbysa", "showtoc:no", "authorname:lippmanrasmussen" ]

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

For each of the following polynomials, use Cauchy’s Bound to find an interval containing all the real zeros, then use Rational Roots Theorem to make a list of possible rational zeros.

$1. f(x)=x^{3} -2x^{2} -5x+6 2. f(x)=x^{4} +2x^{3} -12x^{2} -40x-32$ $3. f(x)=x^{4} -9x^{2} -4x+12 4. f(x)=x^{3} +4x^{2} -11x+6$ $5. f(x)=x^{3} -7x^{2} +x-7 6. f(x)=-2x^{3} +19x^{2} -49x+20$ $7. f(x)=-17x^{3} +5x^{2} +34x-10 8. f(x)=36x^{4} -12x^{3} -11x^{2} +2x+1$ $9. f(x)=3x^{3} +3x^{2} -11x-10 10. f(x)=2x^{4} +x^{3} -7x^{2} -3x+3$

Find the real zeros of each polynomial. $11. f(x)=x^{3} -2x^{2} -5x+6 12. f(x)=x^{4} +2x^{3} -12x^{2} -40x-32$ $13. f(x)=x^{4} -9x^{2} -4x+12 14. f(x)=x^{3} +4x^{2} -11x+6$ $15. f(x)=x^{3} -7x^{2} +x-7 16. f(x)=-2x^{3} +19x^{2} -49x+20$ $17. f(x)=-17x^{3} +5x^{2} +34x-10 18. f(x)=36x^{4} -12x^{3} -11x^{2} +2x+1$ $19. f(x)=3x^{3} +3x^{2} -11x-10 20. f(x)=2x^{4} +x^{3} -7x^{2} -3x+3$ $21. f(x)=9x^{3} -5x^{2} -x 22. f(x)=6x^{4} -5x^{3} -9x^{2}$ $23. f(x)=x^{4} +2x^{2} -15 24. f(x)=x^{4} -9x^{2} +14$ $25. f(x)=3x^{4} -14x^{2} -5 26. f(x)=2x^{4} -7x^{2} +6$ $27. f(x)=x^{6} -3x^{3} -10 28. f(x)=2x^{6} -9x^{3} +10$ $29. f(x)=x^{5} -2x^{4} -4x+8 30. f(x)=2x^{5} +3x^{4} -18x-27$ $31. f(x)=x^{5} -60x^{3} -80x^{2} +960x+2304$ $32. f(x)=25x^{5} -105x^{4} +174x^{3} -142x^{2} +57x-9$

$219$