3.5E: Real Zeros of Polynomials (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
section 3.5 exercise
For each of the following polynomials, use Cauchy’s Bound to find an interval containing all the real zeros, then use Rational Roots Theorem to make a list of possible rational zeros.
1. f(x)=x^{3} -2x^{2} -5x+6
2. f(x)=x^{4} +2x^{3} -12x^{2} -40x-32
3. f(x)=x^{4} -9x^{2} -4x+12
4. f(x)=x^{3} +4x^{2} -11x+6
5. f(x)=x^{3} -7x^{2} +x-7
6. f(x)=-2x^{3} +19x^{2} -49x+20
7. f(x)=-17x^{3} +5x^{2} +34x-10
8. f(x)=36x^{4} -12x^{3} -11x^{2} +2x+1
9. f(x)=3x^{3} +3x^{2} -11x-10
10. f(x)=2x^{4} +x^{3} -7x^{2} -3x+3
Find the real zeros of each polynomial.
11. f(x)=x^{3} -2x^{2} -5x+6
12. f(x)=x^{4} +2x^{3} -12x^{2} -40x-32
13. f(x)=x^{4} -9x^{2} -4x+12
14. f(x)=x^{3} +4x^{2} -11x+6
15. f(x)=x^{3} -7x^{2} +x-7
16. f(x)=-2x^{3} +19x^{2} -49x+20
17. f(x)=-17x^{3} +5x^{2} +34x-10
18. f(x)=36x^{4} -12x^{3} -11x^{2} +2x+1
19. f(x)=3x^{3} +3x^{2} -11x-10
20. f(x)=2x^{4} +x^{3} -7x^{2} -3x+3
21. f(x)=9x^{3} -5x^{2} -x
22. f(x)=6x^{4} -5x^{3} -9x^{2}
23. f(x)=x^{4} +2x^{2} -15
24. f(x)=x^{4} -9x^{2} +14
25. f(x)=3x^{4} -14x^{2} -5
26. f(x)=2x^{4} -7x^{2} +6
27. f(x)=x^{6} -3x^{3} -10
28. f(x)=2x^{6} -9x^{3} +10
29. f(x)=x^{5} -2x^{4} -4x+8
30. f(x)=2x^{5} +3x^{4} -18x-27
31. f(x)=x^{5} -60x^{3} -80x^{2} +960x+2304
32. f(x)=25x^{5} -105x^{4} +174x^{3} -142x^{2} +57x-9
- Answer
-
1. All the real zeros lie in the interval [-7, 7]
-Possible rational zeros are \pm 1, \pm 2, \pm 3
3. All of the real zeros lie in the interval [-13, 13]
-Possible rational zeros are \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12
5. All of the real zeors lie in the interval [-8, 8]
-Possible rational zeors are \pm 1, \pm 7
7. All of the real zeros lie in the interval [-3, 3]
-Possible rational zeros are \pm \dfrac{1}{17}, \pm \dfrac{2}{17}, \pm \dfrac{5}{17}, \pm \dfrac{10}{17}, \pm 1, \pm 2, \pm 5, \pm 10
9. All of the real zeros lie in the interval [-\dfrac{14}{3}, \dfrac{14}{3}]
-Possible rational zeros are \pm \dfrac{1}{3}, \pm \dfrac{2}{3}, \pm \dfrac{5}{3}, \pm \dfrac{10}{3}, \pm 1, \pm 2, \pm 5, \pm 10
11. x = -2, x = 1, x = 3 (each has mult. 1)
13. x = -2 (mult. 2), x = 1 (mult. 1), x = 3 (mult. 1)
15. x = 7 (mult. 1)
17. x = \dfrac{5}{17}, x = \pm \sqrt{2} (each has mult. 1)
19. x = -2, x = \dfrac{3 \pm \sqrt{69}} {6} (each has mult. 1)
21. x = 0, x = \dfrac{5 \pm \sqrt{61}}{18} (each has mult. 1)
23. x = \pm \sqrt{3} (each has mult. 1)
25. x = \pm \sqrt{5} (each has mult. 1)
27. x = \sqrt[3]{-2} = -\sqrt[3]{2}, x = \sqrt[3]{5} (each has mult. 1)
29. x = 2, x = \pm \sqrt{2} (each has mult. 1)
31. x = -4 (mult. 3), x = 6 (mult. 2)