3.5E: Real Zeros of Polynomials (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
section 3.5 exercise
For each of the following polynomials, use Cauchy’s Bound to find an interval containing all the real zeros, then use Rational Roots Theorem to make a list of possible rational zeros.
1. f(x)=x3−2x2−5x+6
2. f(x)=x4+2x3−12x2−40x−32
3. f(x)=x4−9x2−4x+12
4. f(x)=x3+4x2−11x+6
5. f(x)=x3−7x2+x−7
6. f(x)=−2x3+19x2−49x+20
7. f(x)=−17x3+5x2+34x−10
8. f(x)=36x4−12x3−11x2+2x+1
9. f(x)=3x3+3x2−11x−10
10. f(x)=2x4+x3−7x2−3x+3
Find the real zeros of each polynomial.
11. f(x)=x3−2x2−5x+6
12. f(x)=x4+2x3−12x2−40x−32
13. f(x)=x4−9x2−4x+12
14. f(x)=x3+4x2−11x+6
15. f(x)=x3−7x2+x−7
16. f(x)=−2x3+19x2−49x+20
17. f(x)=−17x3+5x2+34x−10
18. f(x)=36x4−12x3−11x2+2x+1
19. f(x)=3x3+3x2−11x−10
20. f(x)=2x4+x3−7x2−3x+3
21. f(x)=9x3−5x2−x
22. f(x)=6x4−5x3−9x2
23. f(x)=x4+2x2−15
24. f(x)=x4−9x2+14
25. f(x)=3x4−14x2−5
26. f(x)=2x4−7x2+6
27. f(x)=x6−3x3−10
28. f(x)=2x6−9x3+10
29. f(x)=x5−2x4−4x+8
30. f(x)=2x5+3x4−18x−27
31. f(x)=x5−60x3−80x2+960x+2304
32. f(x)=25x5−105x4+174x3−142x2+57x−9
- Answer
-
1. All the real zeros lie in the interval [-7, 7]
-Possible rational zeros are ±1,±2,±3
3. All of the real zeros lie in the interval [-13, 13]
-Possible rational zeros are ±1,±2,±3,±4,±6,±12
5. All of the real zeors lie in the interval [-8, 8]
-Possible rational zeors are ±1,±7
7. All of the real zeros lie in the interval [-3, 3]
-Possible rational zeros are ±117,±217,±517,±1017,±1,±2,±5,±10
9. All of the real zeros lie in the interval [−143,143]
-Possible rational zeros are ±13,±23,±53,±103,±1,±2,±5,±10
11. x=−2,x=1,x=3 (each has mult. 1)
13. x=−2 (mult. 2), x=1 (mult. 1), x=3 (mult. 1)
15. x=7 (mult. 1)
17. x=517,x=±√2 (each has mult. 1)
19. x=−2,x=3±√696 (each has mult. 1)
21. x=0,x=5±√6118 (each has mult. 1)
23. x=±√3 (each has mult. 1)
25. x=±√5 (each has mult. 1)
27. x=3√−2=−3√2,x=3√5 (each has mult. 1)
29. x=2,x=±√2 (each has mult. 1)
31. x=−4 (mult. 3), x=6 (mult. 2)