Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

3.5E: Real Zeros of Polynomials (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

section 3.5 exercise

For each of the following polynomials, use Cauchy’s Bound to find an interval containing all the real zeros, then use Rational Roots Theorem to make a list of possible rational zeros.

1. f(x)=x^{3} -2x^{2} -5x+6

2. f(x)=x^{4} +2x^{3} -12x^{2} -40x-32

3. f(x)=x^{4} -9x^{2} -4x+12

4. f(x)=x^{3} +4x^{2} -11x+6

5. f(x)=x^{3} -7x^{2} +x-7

6. f(x)=-2x^{3} +19x^{2} -49x+20

7. f(x)=-17x^{3} +5x^{2} +34x-10

8. f(x)=36x^{4} -12x^{3} -11x^{2} +2x+1

9. f(x)=3x^{3} +3x^{2} -11x-10

10. f(x)=2x^{4} +x^{3} -7x^{2} -3x+3

Find the real zeros of each polynomial.

11. f(x)=x^{3} -2x^{2} -5x+6

12. f(x)=x^{4} +2x^{3} -12x^{2} -40x-32

13. f(x)=x^{4} -9x^{2} -4x+12

14. f(x)=x^{3} +4x^{2} -11x+6

15. f(x)=x^{3} -7x^{2} +x-7

16. f(x)=-2x^{3} +19x^{2} -49x+20

17. f(x)=-17x^{3} +5x^{2} +34x-10

18. f(x)=36x^{4} -12x^{3} -11x^{2} +2x+1

19. f(x)=3x^{3} +3x^{2} -11x-10

20. f(x)=2x^{4} +x^{3} -7x^{2} -3x+3

21. f(x)=9x^{3} -5x^{2} -x

22. f(x)=6x^{4} -5x^{3} -9x^{2}

23. f(x)=x^{4} +2x^{2} -15

24. f(x)=x^{4} -9x^{2} +14

25. f(x)=3x^{4} -14x^{2} -5

26. f(x)=2x^{4} -7x^{2} +6

27. f(x)=x^{6} -3x^{3} -10

28. f(x)=2x^{6} -9x^{3} +10

29. f(x)=x^{5} -2x^{4} -4x+8

30. f(x)=2x^{5} +3x^{4} -18x-27

31. f(x)=x^{5} -60x^{3} -80x^{2} +960x+2304

32. f(x)=25x^{5} -105x^{4} +174x^{3} -142x^{2} +57x-9

Answer

1. All the real zeros lie in the interval [-7, 7]

-Possible rational zeros are \pm 1, \pm 2, \pm 3

3. All of the real zeros lie in the interval [-13, 13]

-Possible rational zeros are \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12

5. All of the real zeors lie in the interval [-8, 8]

-Possible rational zeors are \pm 1, \pm 7

7. All of the real zeros lie in the interval [-3, 3]

-Possible rational zeros are \pm \dfrac{1}{17}, \pm \dfrac{2}{17}, \pm \dfrac{5}{17}, \pm \dfrac{10}{17}, \pm 1, \pm 2, \pm 5, \pm 10

9. All of the real zeros lie in the interval [-\dfrac{14}{3}, \dfrac{14}{3}]

-Possible rational zeros are \pm \dfrac{1}{3}, \pm \dfrac{2}{3}, \pm \dfrac{5}{3}, \pm \dfrac{10}{3}, \pm 1, \pm 2, \pm 5, \pm 10

11. x = -2, x = 1, x = 3 (each has mult. 1)

13. x = -2 (mult. 2), x = 1 (mult. 1), x = 3 (mult. 1)

15. x = 7 (mult. 1)

17. x = \dfrac{5}{17}, x = \pm \sqrt{2} (each has mult. 1)

19. x = -2, x = \dfrac{3 \pm \sqrt{69}} {6} (each has mult. 1)

21. x = 0, x = \dfrac{5 \pm \sqrt{61}}{18} (each has mult. 1)

23. x = \pm \sqrt{3} (each has mult. 1)

25. x = \pm \sqrt{5} (each has mult. 1)

27. x = \sqrt[3]{-2} = -\sqrt[3]{2}, x = \sqrt[3]{5} (each has mult. 1)

29. x = 2, x = \pm \sqrt{2} (each has mult. 1)

31. x = -4 (mult. 3), x = 6 (mult. 2)


This page titled 3.5E: Real Zeros of Polynomials (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.

  • Was this article helpful?

Support Center

How can we help?