4.2.1: Constant Coefficient Homogeneous Equations (Exercises)
- Page ID
- 73756
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q5.2.1
In Exercises 5.2.1-5.2.12 find the general solution.
1. \(y''+5y'-6y=0\)
2. \(y''-4y'+5y=0\)
3. \(y''+8y'+7y=0\)
4. \(y''-4y'+4y=0\)
5. \(y'' +2y'+10y=0\)
6. \(y''+6y'+10y=0\)
7. \(y''-8y'+16y=0\)
8. \(y''+y'=0\)
9. \(y''-2y'+3y=0\)
10. \(y''+6y'+13y=0\)
11. \(4y''+4y'+10y=0\)
12. \(10y''-3y'-y=0\)
Q5.2.2
In Exercises 5.2.13-5.2.17 solve the initial value problem.
13. \(y''+14y'+50y=0, \quad y(0)=2,\quad y'(0)=-17\)
14. \(6y''-y'-y=0, \quad y(0)=10,\quad y'(0)=0\)
15. \(6y''+y'-y=0, \quad y(0)=-1,\quad y'(0)=3\)
16. \(4y''-4y'-3y=0, \quad y(0)={13\over 12},\quad y'(0)={23 \over 24}\)
17. \(4y''-12y'+9y=0, \quad y(0)=3,\quad y'(0)={5\over 2}\)
Q5.2.3
In Exercises 5.2.18-5.2.21 solve the initial value problem and graph the solution.
18. \(y''+7y'+12y=0, \quad y(0)=-1,\quad y'(0)=0\)
19. \(y''-6y'+9y=0, \quad y(0)=0,\quad y'(0)=2\)
20. \(36y''-12y'+y=0, \quad y(0)=3,\quad y'(0)={5\over2}\)
21. \(y''+4y'+10y=0, \quad y(0)=3,\quad y'(0)=-2\)
Q5.2.4
22.
- Suppose \(y\) is a solution of the constant coefficient homogeneous equation \[ay''+by'+cy=0. \tag{A}\] Let \(z(x)=y(x-x_0)\), where \(x_0\) is an arbitrary real number. Show that \[az''+bz'+cz=0.\nonumber \]
- Let \(z_1(x)=y_1(x-x_0)\) and \(z_2(x)=y_2(x-x_0)\), where \(\{y_1,y_2\}\) is a fundamental set of solutions of (A). Show that \(\{z_1,z_2\}\) is also a fundamental set of solutions of (A).
- The statement of Theorem 5.2.1 is convenient for solving an initial value problem \[ay''+by'+cy=0, \quad y(0)=k_0,\quad y'(0)=k_1,\nonumber \] where the initial conditions are imposed at \(x_0=0\). However, if the initial value problem is \[ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1, \tag{B}\] where \(x_0\ne0\), then determining the constants in \[y=c_1e^{r_1x}+c_2e^{r_2x}, \quad y=e^{r_1x}(c_1+c_2x),\mbox{ or } y=e^{\lambda x}(c_1\cos\omega x+c_2\sin\omega x)\nonumber \] (whichever is applicable) is more complicated. Use (b) to restate Theorem 5.2.1 in a form more convenient for solving (B).
Q5.2.5
In Exercises 5.2.23-5.2.28 use a method suggested by Exercise 5.2.22 to solve the initial value problem.
23. \(y''+3y'+2y=0, \quad y(1)=-1,\quad y'(1)=4\)
24. \(y''-6y'-7y=0, \quad y(2)=-{1\over3},\quad y'(2)=-5\)
25. \(y''-14y'+49y=0, \quad y(1)=2,\quad y'(1)=11\)
26. \(9y''+6y'+y=0, \quad y(2)=2,\quad y'(2)=-{14\over3}\)
27. \(9y''+4y=0, \quad y(\pi/4)=2,\quad y'(\pi/4)=-2\)
28. \(y''+3y=0, \quad y(\pi/3)=2,\quad y'(\pi/3)=-1\)
Q5.2.6
29. Prove: If the characteristic equation of
\[ay''+by'+cy=0 \tag{A}\]
has a repeated negative root or two roots with negative real parts, then every solution of (A) approaches zero as \(x\to\infty\).
30. Suppose the characteristic polynomial of \(ay''+by'+cy=0\) has distinct real roots \(r_1\) and \(r_2\). Use a method suggested by Exercise 5.2.22 to find a formula for the solution of
\[ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1.\nonumber \]
31 Suppose the characteristic polynomial of \(ay''+by'+cy=0\) has a repeated real root \(r_1\). Use a method suggested by Exercise 5.2.22 to find a formula for the solution of
\[ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1.\nonumber \]
32. Suppose the characteristic polynomial of \(ay''+by'+cy=0\) has complex conjugate roots \(\lambda\pm i\omega\). Use a method suggested by Exercise 5.2.22 to find a formula for the solution of
\[ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1.\nonumber \]
33. Suppose the characteristic equation of
\[ay''+by'+cy=0 \tag{A}\] has a repeated real root \(r_1\). Temporarily, think of \(e^{rx}\) as a function of two real variables \(x\) and \(r\).
- Show that \[a{\partial^2\over\partial^2 x}(e^{rx})+b{\partial \over\partial x}(e^{rx}) +ce^{rx}=a(r-r_1)^2e^{rx}. \tag{B}\]
- Differentiate (B) with respect to \(r\) to obtain \[a{\partial\over\partial r}\left({\partial^2\over\partial^2 x}(e^{rx})\right)+b{\partial\over\partial r}\left({\partial \over\partial x}(e^{rx})\right) +c(xe^{rx})=[2+(r-r_1)x]a(r-r_1)e^{rx}. \tag{C}\]
- Reverse the orders of the partial differentiations in the first two terms on the left side of (C) to obtain \[a{\partial^2\over\partial x^2}(xe^{rx})+b{\partial\over\partial x}(xe^{rx})+c(xe^{rx})=[2+(r-r_1)x]a(r-r_1)e^{rx}. \tag{D}\]
- Set \(r=r_1\) in (B) and (D) to see that \(y_1=e^{r_1x}\) and \(y_2=xe^{r_1x}\) are solutions of (A)
34. In calculus you learned that \(e^u\), \(\cos u\), and \(\sin u\) can be represented by the infinite series
\[e^u=\sum_{n=0}^\infty {u^n\over n!} =1+{u\over 1!}+{u^2\over 2!}+{u^3\over 3!}+\cdots+{u^n\over n!}+\cdots \tag{A}\]
\[\cos u=\sum_{n=0}^\infty (-1)^n{u^{2n}\over(2n)!} =1-{u^2\over2!}+{u^4\over4!}+\cdots+(-1)^n{u^{2n}\over(2n)!} +\cdots, \tag{B}\]
and
\[\sin u=\sum_{n=0}^\infty (-1)^n{u^{2n+1}\over(2n+1)!} =u-{u^3\over3!}+{u^5\over5!}+\cdots+(-1)^n {u^{2n+1}\over(2n+1)!} +\cdots \tag{C}\]
for all real values of \(u\). Even though you have previously considered (A) only for real values of \(u\), we can set \(u=i\theta\), where \(\theta\) is real, to obtain
\[e^{i\theta}=\sum_{n=0}^\infty {(i\theta)^n\over n!}. \tag{D}\]
Given the proper background in the theory of infinite series with complex terms, it can be shown that the series in (D) converges for all real \(\theta\).
- Recalling that \(i^2=-1,\) write enough terms of the sequence \(\{i^n\}\) to convince yourself that the sequence is repetitive: \[1,i,-1,-i,1,i,-1,-i,1,i,-1,-i,1,i,-1,-i,\cdots.\nonumber \] Use this to group the terms in (D) as \[\begin{aligned} e^{i\theta}&=\left(1-{\theta^2\over2}+{\theta^4\over4}+\cdots\right) +i\left(\theta-{\theta^3\over3!}+{\theta^5\over5!}+\cdots\right)\\ &=\sum_{n=0}^\infty (-1)^n{\theta^{2n}\over(2n)!} +i\sum_{n=0}^\infty (-1)^n{\theta^{2n+1}\over(2n+1)!}.\end{aligned}\nonumber \] By comparing this result with (B) and (C), conclude that \[e^{i\theta}=\cos\theta+i\sin\theta. \tag{E}\] This is Euler’s identity.
- Starting from \[e^{i\theta_1}e^{i\theta_2}=(\cos\theta_1+i\sin\theta_1) (\cos\theta_2+i\sin\theta_2),\nonumber \] collect the real part (the terms not multiplied by \(i\)) and the imaginary part (the terms multiplied by \(i\)) on the right, and use the trigonometric identities \[\begin{aligned} \cos(\theta_1+\theta_2)&=\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2\\ \sin(\theta_1+\theta_2)&=\sin\theta_1\cos\theta_2+\cos\theta_1\sin\theta_2\end{aligned}\nonumber \] to verify that \[e^{i(\theta_1+\theta_2)}=e^{i\theta_1}e^{i\theta_2},\nonumber \] as you would expect from the use of the exponential notation \(e^{i\theta}\).
- If \(\alpha\) and \(\beta\) are real numbers, define \[e^{\alpha+i\beta}=e^\alpha e^{i\beta}=e^\alpha(\cos\beta+i\sin\beta). \tag{F}\] Show that if \(z_1=\alpha_1+i\beta_1\) and \(z_2=\alpha_2+i\beta_2\) then \[e^{z_1+z_2}=e^{z_1}e^{z_2}.\nonumber \]
- Let \(a\), \(b\), and \(c\) be real numbers, with \(a\ne0\). Let \(z=u+iv\) where \(u\) and \(v\) are real-valued functions of \(x\). Then we say that \(z\) is a solution of \[ay''+by'+cy=0 \tag{G}\] if \(u\) and \(v\) are both solutions of (G). Use Theorem 5.2.1 (c) to verify that if the characteristic equation of (G) has complex conjugate roots \(\lambda\pm i\omega\) then \(z_1=e^{(\lambda+i\omega)x}\) and \(z_2=e^{(\lambda-i\omega)x}\) are both solutions of (G).