Skip to main content
Mathematics LibreTexts

5.3.1: Constant Coefficient Homogeneous Equations (Exercises)

  • Page ID
    103502
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In Exercises 1-12 find the general solution.

    1. \(y''+5y'-6y=0\)

    2. \(y''-4y'+5y=0\)

    3. \(y''+8y'+7y=0\)

    4. \(y''-4y'+4y=0\)

    5. \(y'' +2y'+10y=0\)

    6. \(y''+6y'+10y=0\)

    7. \(y''-8y'+16y=0\)

    8. \(y''+y'=0\)

    9. \(y''-2y'+3y=0\)

    10. \(y''+6y'+13y=0\)

    11. \(4y''+4y'+10y=0\)

    12. \(10y''-3y'-y=0\)

    In Exercises 13-21 solve the initial value problem.

    13. \(y''+14y'+50y=0, \quad y(0)=2,\quad y'(0)=-17\)

    14. \(6y''-y'-y=0, \quad y(0)=10,\quad y'(0)=0\)

    15. \(6y''+y'-y=0, \quad y(0)=-1,\quad y'(0)=3\)

    16. \(4y''-4y'-3y=0, \quad y(0)={13\over 12},\quad y'(0)={23 \over 24}\)

    17. \(4y''-12y'+9y=0, \quad y(0)=3,\quad y'(0)={5\over 2}\)

    18. \(y''+7y'+12y=0, \quad y(0)=-1,\quad y'(0)=0\)

    19. \(y''-6y'+9y=0, \quad y(0)=0,\quad y'(0)=2\)

    20. \(36y''-12y'+y=0, \quad y(0)=3,\quad y'(0)={5\over2}\)

    21. \(y''+4y'+10y=0, \quad y(0)=3,\quad y'(0)=-2\)

    22. Prove: If the characteristic equation of

    \[ay''+by'+cy=0 \tag{A}\]

    has a repeated negative root or two roots with negative real parts, then every solution of (A) approaches zero as \(x\to\infty\).

    23. In calculus you learned that \(e^u\), \(\cos u\), and \(\sin u\) can be represented by the infinite series

    \[e^u=\sum_{n=0}^\infty {u^n\over n!} =1+{u\over 1!}+{u^2\over 2!}+{u^3\over 3!}+\cdots+{u^n\over n!}+\cdots \tag{A}\]

    \[\cos u=\sum_{n=0}^\infty (-1)^n{u^{2n}\over(2n)!} =1-{u^2\over2!}+{u^4\over4!}+\cdots+(-1)^n{u^{2n}\over(2n)!} +\cdots, \tag{B}\]

    and

    \[\sin u=\sum_{n=0}^\infty (-1)^n{u^{2n+1}\over(2n+1)!} =u-{u^3\over3!}+{u^5\over5!}+\cdots+(-1)^n {u^{2n+1}\over(2n+1)!} +\cdots \tag{C}\]

    for all real values of \(u\). Even though you have previously considered (A) only for real values of \(u\), we can set \(u=i\theta\), where \(\theta\) is real, to obtain

    \[e^{i\theta}=\sum_{n=0}^\infty {(i\theta)^n\over n!}. \tag{D}\]

    Given the proper background in the theory of infinite series with complex terms, it can be shown that the series in (D) converges for all real \(\theta\).

    Recalling that \(i^2=-1,\) write enough terms of the sequence \(\{i^n\}\) to convince yourself that the sequence is repetitive: \[1,i,-1,-i,1,i,-1,-i,1,i,-1,-i,1,i,-1,-i,\cdots.\nonumber \] Use this to group the terms in (D) as \[\begin{aligned} e^{i\theta}&=\left(1-{\theta^2\over2!}+{\theta^4\over4!}+\cdots\right) +i\left(\theta-{\theta^3\over3!}+{\theta^5\over5!}+\cdots\right)\\ &=\sum_{n=0}^\infty (-1)^n{\theta^{2n}\over(2n)!} +i\sum_{n=0}^\infty (-1)^n{\theta^{2n+1}\over(2n+1)!}.\end{aligned}\nonumber \] By comparing this result with (B) and (C), conclude that \[e^{i\theta}=\cos\theta+i\sin\theta. \tag{E}\] This is Euler’s identity.


    This page titled 5.3.1: Constant Coefficient Homogeneous Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.