5.A: Volume
- Page ID
- 31462
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Overview
The purpose of this lesson is to learn how to find the volume of various solids.
This lesson will address the following CCRS Standard(s) for Geometry:
- 7.G.6: Solve real-world and mathematical problems involving area, volume and surface area of two- and three- dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms
- G.GMD.3: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems
- G.MG.2: Apply concepts of density based on area and volume in modeling situations (e.g. persons per square mile, BTUs per cubic foot)
Directions
- Take notes while watching videos below
- Go to http://wamap.org and log into our course to complete assignment 5.A with 80% or better.
Watch
Do
Complete assignment 5.A with 80% or better at http://wamap.org
Summary
In this lesson we have learned:
- If B is the area of the base, then the volume of the prism or cylinder is
- If B is the area of the base, then the volume of the pyramid or cone is
- The volume of a sphere is
</mi> <msup> <mi>r</mi> <mn>3</mn> </msup> </math>' data-equation-content="V=\frac{4}{3}\pi r^3">