Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

NEW 2.3E: Limit Laws

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}


2.3: The Limit Laws

In the following exercises, use the limit laws to evaluate each limit. Justify each step by indicating the appropriate limit law(s).

1) lim_{x→0}(4x^2−2x+3)

Solution: Use constant multiple law and difference law:

lim_{x→0}(4x^2−2x+3)=4lim_{x→0}x^2−2lim_{x→0}x+lim_{x→0}3=3

2) lim_{x→1}\frac{x^3+3x^2+5}{4−7x}

3) lim_{x→−2}\sqrt{x^2−6x+3}

Solution: Use root law: lim_{x→−2}\sqrt{x^2−6x+3}=\sqrt{lim_{x→−2}(x2−6x+3)}=\sqrt{19}

4) lim_{x→−1}(9x+1)^2

In the following exercises, use direct substitution to evaluate each limit.

5) lim_{x→7}x^2)

Solution: 49

6) lim_{x→−2}(4x^2−1)

7) lim_{x→0}\frac{1}{1+sinx}

Solution: 1

8) lim_{x→2}e^{2x−x^2}

9) lim_{x→1}\frac{2−7x}{x+6}

Solution: −\frac{5}{7}

10) lim_{x→3}lne^{3x}

In the following exercises, use direct substitution to show that each limit leads to the indeterminate form 0/0. Then, evaluate the limit.

11) lim_{x→4}\frac{x^2−16}{x−4}

Solution:lim_{x→4}\frac{x^2−16}{x−4}=\frac{16−16}{4−4}=\frac{0}{0}; then, lim_{x→4}\frac{x^2−16}{x−4}= lim_{x→4}\frac{(x+4)(x−4)}{x−4}=8

12) lim_{x→2}\frac{x−2}{x^2−2x}

13) lim_{x→6}\frac{3x−18}{2x−12}

Solution: lim_{x→6}\frac{3x−18}{2x−12}=\frac{18−18}{12−12}=\frac{0}{0}; then, lim_{x→6}\frac{3x−18}{2x− 12}=lim_{x→6}\frac{3(x−6)}{2(x−6)}=\frac{3}{2}

14) lim_{h→0}\frac{(1+h)^2−1}{h}

15) lim_{t→9}\frac{t−9}{\sqrt{t−3}}

Solution: lim_{x→9}\frac{t−9}{\sqrt{t}−3}=\frac{9−9}{3−3}=\frac{0}{0}; then, lim_{t→9}\frac{t−9}{\sqrt{t}−3} =lim_{t→9}\frac{t−9}{\sqrt{t}−3}\frac{\sqrt{t}+3}{\sqrt{t}+3}=lim_{t→9}(\sqrt{t}+3)=6

16) lim_{h→0}\frac{\frac{1}{a+h}−\frac{1}{a}}{h}, where a is a real-valued constant

17) lim_{θ→π}\frac{sinθ}{tanθ}

Solution: lim_{θ→π}\frac{sinθ}{tanθ}=\frac{sinπ}{tanπ}=\frac{0}{0}; then, lim_{θ→π}\frac{sinθ}{tanθ}=lim_{θ→ π}\frac{sinθ}{\frac{sinθ}{cosθ}}=lim_{θ→π}cosθ=−1

18) lim_{x→1}\frac{x^3−1}{x^2−1}

19) lim_{x→1/2}\frac{2x^2+3x−2}{2x−1}

Solution: lim_{x→1/2}\frac{2x^2+3x−2}{2x−1}=\frac{\frac{1}{2}+\frac{3}{2}−2}{1−1}=\frac{0}{0}; then, lim_{x→ 1/2}\frac{2x^2+3x−2}{2x−1}=lim_{x→1/2}frac{(2x−1)(x+2)}{2x−1}=\frac{5}{2}

20) lim_{x→−3}\frac{\sqrt{x+4}−1}{x+3}

In the following exercises, use direct substitution to obtain an undefined expression. Then, use the method of Example to simplify the function to help determine the limit.

21) lim_{x→−2^−}\frac{2x^2+7x−4}{x^2+x−2}

Solution: −∞

22) lim_{x→−2^+}\frac{2x^2+7x−4}{x^2+x−2}

23) lim_{x→1^−}\frac{2x^2+7x−4}{x^2+x−2}

Solution: −∞

24) lim_{x→1^+}\frac{2x^2+7x−4}{x^2+x−2}

In the following exercises, assume that lim_{x→6}f(x)=4,lim_{x→6}g(x)=9, and lim_{x→6}h(x)=6. Use these three facts and the limit laws to evaluate each limit

25) lim_{x→6}2f(x)g(x)

Solution: lim_{x→6}2f(x)g(x)=2lim_{x→6}f(x)lim_{x→6}g(x)=72

26) lim_{x→6}\frac{g(x)−1}{f(x)}

27) lim_{x→6}(f(x)+\frac{1}{3}g(x))

Solution: lim_{x→6}(f(x)+\frac{1}{3}g(x))=lim_{x→6}f(x)+\frac{1}{3}lim_{x→6}g(x)=7\

28) lim_{x→6}\frac{(h(x))^3}{2}

29) lim_{x→6}\sqrt{g(x)−f(x)}

Solution: lim_{x→6}\sqrt{g(x)−f(x)}=\sqrt{lim_{x→6}g(x)−lim_{x→6}f(x)}=\sqrt{5}

30) lim_{x→6}x⋅h(x)

31) lim_{x→6}[(x+1)⋅f(x)]

Solution: lim_{x→6}[(x+1)f(x)]=(lim_{x→6}(x+1))(lim_{x→6}f(x))=28

32) lim_{x→6}(f(x)⋅g(x)−h(x))

[T] In the following exercises, use a calculator to draw the graph of each piecewise-defined function and study the graph to evaluate the given limits.

33) f(x)=\begin{cases}x2 & x≤3,\\ x+4 & x>3\end{cases}

  1. a. lim_{x→3^−}f(x)
  2. b. lim_{x→3^+}f(x)

Solution:

CNX_Calc_Figure_02_03_202.jpeg

a. 9; b. 7

34) g(x)=\begin{cases}x^3−1 & x≤0\\1 & x>0\end{cases}

  1. a. lim_{x→0^−}g(x)
  2. b. lim_{x→0^+}g(x)

35) h(x)=\begin{cases}x^2−2x+1 & x<2x≥2\\3−x & x≥2\end{cases}

  1. a. lim_{x→2^−}h(x)
  2. b. lim_{x→2^+}h(x)

In the following exercises, use the following graphs and the limit laws to evaluate each limit.

CNX_Calc_Figure_02_03_201.jpeg

36) lim_{x→−3^+}(f(x)+g(x))

37) lim_{x→−3^−}(f(x)−3g(x))

Solution: lim_{x→−3^−}(f(x)−3g(x))=lim_{x→−3^−}f(x)−3lim_{x→−3^−}g(x)=0+6=6

38) lim_{x→0}\frac{f(x)g(x)}{3}

39) lim_{x→−5}\frac{2+g(x)}{f(x)}

Solution: lim_{x→−5}\frac{2+g(x)}{f(x)}=\frac{2+(lim_{x→−5}g(x))}{lim_{x→−5}f(x)}=\frac{2+0}{2}=1

40) lim_{x→1}(f(x))^2

41) lim_{x→1}\sqrt{f(x)−g(x)}

Solution: lim_{x→1}\sqrt[3]{f(x)−g(x)}=\sqrt[3]{lim_{x→1}f(x)−lim_{x→1}g(x)}=\sqrt[3]{2+5}=\sqrt[3]{7}

42) lim_{x→−7}(x⋅g(x))

43) lim_{x→−9}[x⋅f(x)+2⋅g(x)]

Solution: lim_{x→−9}(xf(x)+2g(x))=(lim_{x→−9}x)(lim_{x→−9}f(x))+2lim_{x→−9}(g(x))=(−9)(6)+2(4)=−46

For the following problems, evaluate the limit using the squeeze theorem. Use a calculator to graph the functions f(x),g(x), and h(x) when possible.

44) [T] True or False? If 2x−1≤g(x)≤x^2−2x+3, then lim_{x→2}g(x)=0.

45) [T] \(lim_{θ→0}θ^2cos(\frac{1}{θ})

Solution: The limit is zero.

CNX_Calc_Figure_02_03_206.jpeg

46) lim_{x→0}f(x), where f(x)=\begin{cases}0 & x rational\\ x^2 & x irrrational\end{cases}

47) [T] In physics, the magnitude of an electric field generated by a point charge at a distance r in vacuum is governed by Coulomb’s law: E(r)=\frac{q}{4πε0_r^2}, where E represents the magnitude of the electric field, q is the charge of the particle, r is the distance between the particle and where the strength of the field is measured, and \frac{1}{4πε_0} is Coulomb’s constant: 8.988×109N⋅m^2/C^2.

a. Use a graphing calculator to graph E(r) given that the charge of the particle is q=10^{−10}.

b. Evaluate lim_{r→0^+}E(r). What is the physical meaning of this quantity? Is it physically relevant? Why are you evaluating from the right?

Solution: a

CNX_Calc_Figure_02_03_207.jpeg

b. ∞. The magnitude of the electric field as you approach the particle q becomes infinite. It does not make physical sense to evaluate negative distance.

48) [T] The density of an object is given by its mass divided by its volume: ρ=m/V.

a. Use a calculator to plot the volume as a function of density (V=m/ρ), assuming you are examining something of mass 8 kg (m=8).

b. Evaluate lim_{x→0^+}V(\rho) and explain the physical meaning.

Chapter Review Exercises

True or False. In the following exercises, justify your answer with a proof or a counterexample.

212) Using the graph, find each limit or explain why the limit does not exist.

a. lim_{x→−1}f(x)

b. lim_{x→1}f(x)

c. lim_{x→0^+}f(x)

d. lim_{x→2}f(x)

CNX_Calc_Figure_02_05_207.jpeg


In the following exercises, evaluate the limit algebraically or explain why the limit does not exist.

213) lim_{x→2}\frac{2x^2−3x−2}{x−2}

Solution: 5

214) lim_{x→0}3x^2−2x+4

215) lim_{x→3}\frac{x^3−2x^2−1}{3x−2}

Solution: 8/7

216) lim_{x→π/2}\frac{cotx}{cosx} This is covered in section 2.4

217) lim_{x→−5}\frac{x^2+25}{x+5}

Solution:DNE

218) lim_{x→2}\frac{3x^2−2x−8}{x^2−4}

219) lim_{x→1}\frac{x^2−1}{x^3−1}

Solution: 2/3

220) lim_{x→1}\frac{x^2−1}{\sqrt{x}−1}

221) lim_{x→4}\frac{4−x}{\sqrt{x}−2}

Solution: −4

222) lim_{x→4}\frac{1}{\sqrt{x}−2}


In the following exercises, use the squeeze theorem to prove the limit.

223) lim_{x→0}x^2cos(2πx)=0

Solution: Since −1≤cos(2πx)≤1, then −x^2≤x^2cos(2πx)≤x^2. Since lim_{x→0}x^2=0=lim_{x→0}−x^2, it follows that lim_{x→0}x^2cos(2πx)=0.

224) lim_{x→0}x^3sin(\frac{π}{x})=0


NEW 2.3E: Limit Laws is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?