Skip to main content
Mathematics LibreTexts

NEW 2.3E: Limit Laws

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    2.3: The Limit Laws

    In the following exercises, use the limit laws to evaluate each limit. Justify each step by indicating the appropriate limit law(s).

    1) \(lim_{x→0}(4x^2−2x+3)\)

    Solution: Use constant multiple law and difference law:


    2) \(lim_{x→1}\frac{x^3+3x^2+5}{4−7x}\)

    3) \(lim_{x→−2}\sqrt{x^2−6x+3}\)

    Solution: Use root law: \(lim_{x→−2}\sqrt{x^2−6x+3}=\sqrt{lim_{x→−2}(x2−6x+3)}=\sqrt{19}\)

    4) \(lim_{x→−1}(9x+1)^2\)

    In the following exercises, use direct substitution to evaluate each limit.

    5) \(lim_{x→7}x^2)\)

    Solution: 49

    6) \(lim_{x→−2}(4x^2−1)\)

    7) \(lim_{x→0}\frac{1}{1+sinx}\)

    Solution: 1

    8) \(lim_{x→2}e^{2x−x^2}\)

    9) \(lim_{x→1}\frac{2−7x}{x+6}\)

    Solution: \(−\frac{5}{7}\)

    10) \(lim_{x→3}lne^{3x}\)

    In the following exercises, use direct substitution to show that each limit leads to the indeterminate form \(0/0\). Then, evaluate the limit.

    11) \(lim_{x→4}\frac{x^2−16}{x−4}\)

    Solution:\(lim_{x→4}\frac{x^2−16}{x−4}=\frac{16−16}{4−4}=\frac{0}{0}; then, lim_{x→4}\frac{x^2−16}{x−4}= lim_{x→4}\frac{(x+4)(x−4)}{x−4}=8\)

    12) \(lim_{x→2}\frac{x−2}{x^2−2x}\)

    13) \(lim_{x→6}\frac{3x−18}{2x−12}\)

    Solution: \(lim_{x→6}\frac{3x−18}{2x−12}=\frac{18−18}{12−12}=\frac{0}{0}; then, lim_{x→6}\frac{3x−18}{2x− 12}=lim_{x→6}\frac{3(x−6)}{2(x−6)}=\frac{3}{2}\)

    14) \(lim_{h→0}\frac{(1+h)^2−1}{h}\)

    15) \(lim_{t→9}\frac{t−9}{\sqrt{t−3}}\)

    Solution: \(lim_{x→9}\frac{t−9}{\sqrt{t}−3}=\frac{9−9}{3−3}=\frac{0}{0}; then, lim_{t→9}\frac{t−9}{\sqrt{t}−3} =lim_{t→9}\frac{t−9}{\sqrt{t}−3}\frac{\sqrt{t}+3}{\sqrt{t}+3}=lim_{t→9}(\sqrt{t}+3)=6\)

    16) \(lim_{h→0}\frac{\frac{1}{a+h}−\frac{1}{a}}{h}\), where a is a real-valued constant

    17) \(lim_{θ→π}\frac{sinθ}{tanθ}\)

    Solution: \(lim_{θ→π}\frac{sinθ}{tanθ}=\frac{sinπ}{tanπ}=\frac{0}{0}; then, lim_{θ→π}\frac{sinθ}{tanθ}=lim_{θ→ π}\frac{sinθ}{\frac{sinθ}{cosθ}}=lim_{θ→π}cosθ=−1\)

    18) \(lim_{x→1}\frac{x^3−1}{x^2−1}\)

    19) \(lim_{x→1/2}\frac{2x^2+3x−2}{2x−1}\)

    Solution: \(lim_{x→1/2}\frac{2x^2+3x−2}{2x−1}=\frac{\frac{1}{2}+\frac{3}{2}−2}{1−1}=\frac{0}{0}; then, lim_{x→ 1/2}\frac{2x^2+3x−2}{2x−1}=lim_{x→1/2}frac{(2x−1)(x+2)}{2x−1}=\frac{5}{2}\)

    20) \(lim_{x→−3}\frac{\sqrt{x+4}−1}{x+3}\)

    In the following exercises, use direct substitution to obtain an undefined expression. Then, use the method of Example to simplify the function to help determine the limit.

    21) \(lim_{x→−2^−}\frac{2x^2+7x−4}{x^2+x−2}\)

    Solution: −∞

    22) \(lim_{x→−2^+}\frac{2x^2+7x−4}{x^2+x−2}\)

    23) \(lim_{x→1^−}\frac{2x^2+7x−4}{x^2+x−2}\)

    Solution: −∞

    24) \(lim_{x→1^+}\frac{2x^2+7x−4}{x^2+x−2}\)

    In the following exercises, assume that \(lim_{x→6}f(x)=4,lim_{x→6}g(x)=9\), and \(lim_{x→6}h(x)=6\). Use these three facts and the limit laws to evaluate each limit

    25) \(lim_{x→6}2f(x)g(x)\)

    Solution: \(lim_{x→6}2f(x)g(x)=2lim_{x→6}f(x)lim_{x→6}g(x)=72\)

    26) \(lim_{x→6}\frac{g(x)−1}{f(x)}\)

    27) \(lim_{x→6}(f(x)+\frac{1}{3}g(x))\)

    Solution: \(lim_{x→6}(f(x)+\frac{1}{3}g(x))=lim_{x→6}f(x)+\frac{1}{3}lim_{x→6}g(x)=7\)\

    28) \(lim_{x→6}\frac{(h(x))^3}{2}\)

    29) \(lim_{x→6}\sqrt{g(x)−f(x)}\)

    Solution: \(lim_{x→6}\sqrt{g(x)−f(x)}=\sqrt{lim_{x→6}g(x)−lim_{x→6}f(x)}=\sqrt{5}\)

    30) \(lim_{x→6}x⋅h(x)\)

    31) \(lim_{x→6}[(x+1)⋅f(x)]\)

    Solution: \(lim_{x→6}[(x+1)f(x)]=(lim_{x→6}(x+1))(lim_{x→6}f(x))=28\)

    32) \(lim_{x→6}(f(x)⋅g(x)−h(x))\)

    [T] In the following exercises, use a calculator to draw the graph of each piecewise-defined function and study the graph to evaluate the given limits.

    33) \(f(x)=\begin{cases}x2 & x≤3,\\ x+4 & x>3\end{cases}\)

    1. a. \(lim_{x→3^−}f(x)\)
    2. b. \(lim_{x→3^+}f(x)\)



    a. 9; b. 7

    34) \(g(x)=\begin{cases}x^3−1 & x≤0\\1 & x>0\end{cases}\)

    1. a. \(lim_{x→0^−}g(x)\)
    2. b. \(lim_{x→0^+}g(x)\)

    35) \(h(x)=\begin{cases}x^2−2x+1 & x<2x≥2\\3−x & x≥2\end{cases}\)

    1. a. \(lim_{x→2^−}h(x)\)
    2. b. \(lim_{x→2^+}h(x)\)

    In the following exercises, use the following graphs and the limit laws to evaluate each limit.


    36) \(lim_{x→−3^+}(f(x)+g(x))\)

    37) \(lim_{x→−3^−}(f(x)−3g(x))\)

    Solution: \(lim_{x→−3^−}(f(x)−3g(x))=lim_{x→−3^−}f(x)−3lim_{x→−3^−}g(x)=0+6=6\)

    38) \(lim_{x→0}\frac{f(x)g(x)}{3}\)

    39) \(lim_{x→−5}\frac{2+g(x)}{f(x)}\)

    Solution: \(lim_{x→−5}\frac{2+g(x)}{f(x)}=\frac{2+(lim_{x→−5}g(x))}{lim_{x→−5}f(x)}=\frac{2+0}{2}=1\)

    40) \(lim_{x→1}(f(x))^2\)

    41) \(lim_{x→1}\sqrt{f(x)−g(x)}\)

    Solution: \(lim_{x→1}\sqrt[3]{f(x)−g(x)}=\sqrt[3]{lim_{x→1}f(x)−lim_{x→1}g(x)}=\sqrt[3]{2+5}=\sqrt[3]{7}\)

    42) \(lim_{x→−7}(x⋅g(x))\)

    43) \(lim_{x→−9}[x⋅f(x)+2⋅g(x)]\)

    Solution: \(lim_{x→−9}(xf(x)+2g(x))=(lim_{x→−9}x)(lim_{x→−9}f(x))+2lim_{x→−9}(g(x))=(−9)(6)+2(4)=−46\)

    For the following problems, evaluate the limit using the squeeze theorem. Use a calculator to graph the functions \(f(x),g(x)\), and \(h(x)\) when possible.

    44) [T] True or False? If \(2x−1≤g(x)≤x^2−2x+3\), then \(lim_{x→2}g(x)=0\).

    45) [T] \(lim_{θ→0}θ^2cos(\frac{1}{θ})

    Solution: The limit is zero.


    46) \(lim_{x→0}f(x)\), where \(f(x)=\begin{cases}0 & x rational\\ x^2 & x irrrational\end{cases}\)

    47) [T] In physics, the magnitude of an electric field generated by a point charge at a distance r in vacuum is governed by Coulomb’s law: \(E(r)=\frac{q}{4πε0_r^2}\), where E represents the magnitude of the electric field, q is the charge of the particle, r is the distance between the particle and where the strength of the field is measured, and \frac{1}{4πε_0} is Coulomb’s constant: \(8.988×109N⋅m^2/C^2\).

    a. Use a graphing calculator to graph \(E(r)\) given that the charge of the particle is \(q=10^{−10}\).

    b. Evaluate \(lim_{r→0^+}E(r)\). What is the physical meaning of this quantity? Is it physically relevant? Why are you evaluating from the right?

    Solution: a


    b. ∞. The magnitude of the electric field as you approach the particle q becomes infinite. It does not make physical sense to evaluate negative distance.

    48) [T] The density of an object is given by its mass divided by its volume: \(ρ=m/V.\)

    a. Use a calculator to plot the volume as a function of density \((V=m/ρ)\), assuming you are examining something of mass 8 kg (\(m=8\)).

    b. Evaluate \(lim_{x→0^+}V(\rho)\) and explain the physical meaning.

    Chapter Review Exercises

    True or False. In the following exercises, justify your answer with a proof or a counterexample.

    212) Using the graph, find each limit or explain why the limit does not exist.

    a. \(lim_{x→−1}f(x)\)

    b. \(lim_{x→1}f(x)\)

    c. \(lim_{x→0^+}f(x)\)

    d. \(lim_{x→2}f(x)\)


    In the following exercises, evaluate the limit algebraically or explain why the limit does not exist.

    213) \(lim_{x→2}\frac{2x^2−3x−2}{x−2}\)

    Solution: 5

    214) \(lim_{x→0}3x^2−2x+4\)

    215) \(lim_{x→3}\frac{x^3−2x^2−1}{3x−2}\)

    Solution: 8/7

    216) \(lim_{x→π/2}\frac{cotx}{cosx}\) This is covered in section 2.4

    217) \(lim_{x→−5}\frac{x^2+25}{x+5}\)


    218) \(lim_{x→2}\frac{3x^2−2x−8}{x^2−4}\)

    219) \(lim_{x→1}\frac{x^2−1}{x^3−1}\)

    Solution: 2/3

    220) \(lim_{x→1}\frac{x^2−1}{\sqrt{x}−1}\)

    221) \(lim_{x→4}\frac{4−x}{\sqrt{x}−2}\)

    Solution: −4

    222) \(lim_{x→4}\frac{1}{\sqrt{x}−2}\)

    In the following exercises, use the squeeze theorem to prove the limit.

    223) \(lim_{x→0}x^2cos(2πx)=0\)

    Solution: Since \(−1≤cos(2πx)≤1\), then \(−x^2≤x^2cos(2πx)≤x^2\). Since \(lim_{x→0}x^2=0=lim_{x→0}−x^2\), it follows that \(lim_{x→0}x^2cos(2πx)=0\).

    224) \(lim_{x→0}x^3sin(\frac{π}{x})=0\)

    NEW 2.3E: Limit Laws is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?