Search
- Filter Results
- Location
- There are no locations to filter by
- Classification
- Include attachments
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_2_Limits/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_2_Limits%2F%2FNEW_2.3E%3A_Limit_Laws_and_Techniques_ExercisesThese are homework exercises to accompany Chapter 2 of OpenStax's "Calculus" Textmap.
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_3%3A_Derivatives/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_3%3A_Derivatives%2F%2F3.6_E%3A_Rates_of_Change_ExercisesIn this case, s(t)=0 represents the time at which the back of the car is at the garage door, so s(0)=−4 is the starting position of the car, 4 feet inside the garage. Suppose the price-demand ...In this case, s(t)=0 represents the time at which the back of the car is at the garage door, so s(0)=−4 is the starting position of the car, 4 feet inside the garage. Suppose the price-demand and cost functions for the production of cordless drills is given respectively by p=143−0.03x and C(x)=75,000+65x, where x is the number of cordless drills that are sold at a price of p dollars per drill and C(x) is the cost of producing x cordless drills.
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_3%3A_Derivatives/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_3%3A_Derivatives%2F%2F3.2E%3A_Derivative_as_a_Function_Exercises102) [T] The best linear fit to the data is given by H(t)=7.229t−4.905, where H is the height of the rocket (in meters) and t is the time elapsed since takeoff. 104) [T] The best cubic fit to ...102) [T] The best linear fit to the data is given by H(t)=7.229t−4.905, where H is the height of the rocket (in meters) and t is the time elapsed since takeoff. 104) [T] The best cubic fit to the data is given by F(t)=0.2037t3+2.956t2−2.705t+0.4683, where F is the height of the rocket (in m) and t is the time elapsed since take off.
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_4%3A_Applications_of_Derivatives/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_4%3A_Applications_of_Derivatives%2F%2F4.3E%3A_Shape_of_the_Graph_ExercisesDecreasing for −2<x<−1 and 1<x<2; increasing for −1<x<1 and x<−2 and x>2 maxima at x=−1 and x=1, minima at x=−2 and x=0 and x=2 216) f(x)>0,f′(x)>0 over \(x...Decreasing for −2<x<−1 and 1<x<2; increasing for −1<x<1 and x<−2 and x>2 maxima at x=−1 and x=1, minima at x=−2 and x=0 and x=2 216) f(x)>0,f′(x)>0 over x>1,−3<x<0,f′(x)=0 over 0<x<1 217) f′(x)>0 over x>2,−3<x<−1,f′(x)<0 over −1<x<2,f″ for all x 218) f''(x)<0 over −1<x<1,f''(x)>0,−3<x<−1,1<x<3, local maximum at x=0, local minima at x=±2
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_4%3A_Applications_of_Derivatives/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_4%3A_Applications_of_Derivatives%2F%2F4.2E%3A__Maxima_and_Minima_ExercisesSince the absolute maximum is the function (output) value rather than the x value, the answer is no; answers will vary 106) Absolute maximum at x=4, absolute minimum at x=−1, local maximum at ...Since the absolute maximum is the function (output) value rather than the x value, the answer is no; answers will vary 106) Absolute maximum at x=4, absolute minimum at x=−1, local maximum at x=−2, and a critical point that is not a maximum or minimum at x=2 107) Absolute maxima at x=2 and x=−3, local minimum at x=1, and absolute minimum at x=4 Absolute minima: x=0, x=2, y=1; local maximum at x=1, y=2
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_5%3A_Integration/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_5%3A_Integration%2F%2F5.1_Approximating_Area_(Riemann_Sum)_ExercisesBut, \displaystyle f(c)≤f(x) for \displaystyle c≤x≤d, so the area under the graph of \displaystyle f between \displaystyle c and \displaystyle d is \displaystyle f(c)(d−c) plus...But, \displaystyle f(c)≤f(x) for \displaystyle c≤x≤d, so the area under the graph of \displaystyle f between \displaystyle c and \displaystyle d is \displaystyle f(c)(d−c) plus the area below the graph of f but above the horizontal line segment at height \displaystyle f(c), which is positive.
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2Fprofessor_playground/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2Fprofessor_playground%2F%2F4.E%3A_Open_Stax_4.1_-_4.5_ExercisesThese are homework exercises to accompany Chapter 4 of OpenStax's "Calculus" Textmap.
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_2_Limits/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_2_Limits%2F%2F2.5E%3A_Limits_at_Infinity_EXERCISESFor the following functions f(x), determine whether there is an asymptote at x=a. 263) \displaystyle \lim_{x→∞}\frac{x^2−2x+5}{x+2} 264) \(\displaystyle \lim_{x→−∞}\frac{3x^3−2x}{x^2+2x+8}...For the following functions f(x), determine whether there is an asymptote at x=a. 263) \displaystyle \lim_{x→∞}\frac{x^2−2x+5}{x+2} 264) \displaystyle \lim_{x→−∞}\frac{3x^3−2x}{x^2+2x+8} 267) \displaystyle \lim_{x→−∞}\frac{\sqrt{4x^2−1}}{x+2} 270) \displaystyle \lim_{x→∞}\frac{2\sqrt{x}}{x−\sqrt{x}+1} 271) f(x)=x−\frac{9}{x} 279) f(x)=\frac{1}{x^3+x^2} Horizontal: y=0, vertical: x=0 and x=−1 CR 2) \displaystyle \lim_{x→∞}cos(\frac{1}{x})
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_2_Limits/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_2_Limits%2F%2F2.3E%3A_Limit_Laws_and_Techniques_for_Computing_Limits_EXERCISES\displaystyle \lim_{x→4}\frac{x^2−16}{x−4}=\frac{16−16}{4−4}=\frac{0}{0}; then, \displaystyle \lim_{x→4}\frac{x^2−16}{x−4}= \displaystyle \lim_{x→4}\frac{(x+4)(x−4)}{x−4}=8 \( \displaystyle \lim _...\displaystyle \lim_{x→4}\frac{x^2−16}{x−4}=\frac{16−16}{4−4}=\frac{0}{0}; then, \displaystyle \lim_{x→4}\frac{x^2−16}{x−4}= \displaystyle \lim_{x→4}\frac{(x+4)(x−4)}{x−4}=8 \displaystyle \lim _{x→−9}(xf(x)+2g(x))=( \displaystyle \lim _{x→−9}x)( \displaystyle \lim _{x→−9}f(x))+2 \displaystyle \lim _{x→−9}(g(x))=(−9)(6)+2(4)=−46
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_4%3A_Applications_of_Derivatives/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_4%3A_Applications_of_Derivatives%2F%2F4.0E%3A__Exercises4.0E: Exercises 0) Did you read the Chapter 4 Prelude, section 4.0? Answer: Cool Rocket