Skip to main content
Mathematics LibreTexts

4.3E: Shape of the Graph Exercises

  • Page ID
    20642
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    4.3: Derivatives and the Shape of a Graph

    194) If c is a critical point of \(f(x)\), when is there no local maximum or minimum at \(c\)? Explain.

    195) For the function \(y=x^3\), is \(x=0\) both an inflection point and a local maximum/minimum?

    Answer:
    It is not a local maximum/minimum because \(f′\) does not change sign; it is an inflection point because \(f′′\) does change sign.

    196) For the function \(y=x^3\), is \(x=0\) an inflection point?

    197) Is it possible for a point \(c\) to be both an inflection point and a local extrema of a twice differentiable function?

    Answer:
    No

    198) Why do you need continuity for the first derivative test? Come up with an example.

    199) Explain whether a concave-down function has to cross \(y=0\) for some value of \(x\).

    Answer:
    False; for example, \(y=\sqrt{x}\).

    200) Explain whether a polynomial of degree \(2\) can have an inflection point.


    For the following exercises, analyze the graphs of \(f′\), then list all intervals where f is increasing or decreasing.

    201)

    CNX_Calc_Figure_04_05_201.jpeg

    Answer:
    Increasing for \(−2<x<−1\) and \(x>2\); decreasing for \(x<−2\) and \(−1<x<2\)

    202)

    CNX_Calc_Figure_04_05_202.jpeg

    203)

    CNX_Calc_Figure_04_05_203.jpeg

    Answer:
    Decreasing for \(x<1\), increasing for \(x>1\)

    204)

    CNX_Calc_Figure_04_05_204.jpeg

    205)

    CNX_Calc_Figure_04_05_205.jpeg

    Answer:
    Decreasing for \(−2<x<−1\) and \(1<x<2\); increasing for \(−1<x<1\) and \(x<−2\) and \(x>2\)

    For the following exercises, analyze the graphs of \(f′,\) then list all intervals where

    a. \(f\) is increasing and decreasing and

    b. the minima and maxima are located.

    206)

    CNX_Calc_Figure_04_05_206.jpeg

    207)

    CNX_Calc_Figure_04_05_207.jpeg

    Answer:
    a. Increasing over \(−2<x<−1,0<x<1,x>2\), decreasing over \(x<−2, −1<x<0,1<x<2;\)
    b. maxima at \(x=−1\) and \(x=1\), minima at \(x=−2\) and \(x=0\) and \(x=2\)

    208)

    CNX_Calc_Figure_04_05_208.jpeg

    209)

    CNX_Calc_Figure_04_05_209.jpeg

    Answer:
    a. Increasing over \(x>0\), decreasing over \(x<0;\)
    b. Minimum at \(x=0\)

    210)

    CNX_Calc_Figure_04_05_210.jpeg

    For the following exercises, analyze the graphs of \(f′\), then list all inflection points and intervals \(f\) that are concave up and concave down.

    211)

    CNX_Calc_Figure_04_05_211.jpeg

    Answer:
    Concave up on all \(x\), no inflection points

    212)

    CNX_Calc_Figure_04_05_212.jpeg

    213)

    CNX_Calc_Figure_04_05_213.jpeg

    Answer:
    Concave up on all \(x\), no inflection points (since f'(x) is always increasing)

    214)

    CNX_Calc_Figure_04_05_214.jpeg

    215)

    CNX_Calc_Figure_04_05_215.jpeg

    Answer:
    Concave up for \(x<0\) and \(x>1\), concave down for \(0<x<1\)
    inflection points at \(x=0\) and \(x=1\)

    For the following exercises, draw a graph that satisfies the given specifications for the domain \(x=[−3,3].\) The function does not have to be continuous or differentiable.

    216) \(f(x)>0,f′(x)>0\) over \(x>1,−3<x<0,f′(x)=0\) over \(0<x<1\)

    217) \(f′(x)>0\) over \(x>2,−3<x<−1,f′(x)<0\) over \(−1<x<2,f''(x)<0\) for all \(x\)

    Answer:
    answers will vary

    218) \(f''(x)<0\) over \(−1<x<1,f''(x)>0,−3<x<−1,1<x<3,\) local maximum at \(x=0,\) local minima at \(x=±2\)

    219) There is a local maximum at \(x=2,\) local minimum at \(x=1,\) and the graph is neither concave up nor concave down.

    Answer:
    answers will vary

    220) There are local maxima at \(x=±1,\) the function is concave up for all \(x\), and the function remains positive for all \(x.\)

    For the following exercises, determine

    a. intervals where \(f\) is increasing or decreasing and

    b. local minima and maxima of \(f\).

    221) \(f(x)=sinx+sin^3x\) over −π<x<π

    Answer:

    a. Increasing over \(−\frac{π}{2}<x<\frac{π}{2},\) decreasing over \(x<−π\frac{π}{2},x>\frac{π}{2}\)

    b. Local maximum at \(x=\frac{π}{2}\); local minimum at \(x=−\frac{π}{2}\)

    222) \(f(x)=x^2+cosx\)


    For the following exercise, determine a. intervals where \(f\) is concave up or concave down, and b. the inflection points of \(f\).

    223) \(f(x)=x^3−4x^2+x+2\)

    Answer:

    a. Concave up for \(x>\frac{4}{3},\) concave down for \(x<\frac{4}{3}\)

    b. Inflection point at \(x=\frac{4}{3}\)


    For the following exercises, determine

    a. intervals where \(f\) is increasing or decreasing,

    b. local minima and maxima of \(f\),

    c. intervals where \(f\) is concave up and concave down, and

    d. the inflection points of \(f.\)

    224) \(f(x)=x^2−6x\)

    225) \(f(x)=x^3−6x^2\)

    Answer:
    a. Increasing over \(x<0\) and \(x>4,\) decreasing over \(0<x<4\)
    b. Maximum at \(x=0\), minimum at \(x=4\)
    c. Concave up for \(x>2\), concave down for \(x<2\)
    d. Infection point at \(x=2\)

    226) \(f(x)=x^4−6x^3\)

    227) \(f(x)=x^{11}−6x^{10}\)

    Answer:
    a. Increasing over \(x<0\) and \(x>\frac{60}{11}\), decreasing over \(0<x<\frac{60}{11}\) b. Minimum at \(x=\frac{60}{11}\) c. Concave down for \(x<\frac{54}{11}\), concave up for \(x>\frac{54}{11}\) d. Inflection point at \(x=\frac{54}{11}\)

    228) \(f(x)=x+x^2−x^3\)

    229) \(f(x)=x^2+x+1\)

    Answer:

    a. Increasing over \(x>−\frac{1}{2}\), decreasing over \(x<−\frac{1}{2}\) b. Minimum at \(x=−\frac{1}{2}\) c. Concave up for all \(x\) d. No inflection points

    230) \(f(x)=x^3+x^4\)


    For the following exercises, determine

    a. intervals where \(f\) is increasing or decreasing,

    b. local minima and maxima of \(f,\)

    c. intervals where \(f\) is concave up and concave down, and

    d. the inflection points of \(f.\) Sketch the curve, then use a calculator to compare your answer. If you cannot determine the exact answer analytically, use a calculator.

    231) [T] \(f(x)=sin(πx)−cos(πx)\) over \(x=[−1,1]\)

    Answer:
    a. Increases over \(−\frac{1}{4}<x<\frac{3}{4},\) decreases over \(x>\frac{3}{4}\) and \(x<−\frac{1}{4}\) b. Minimum at \(x=−\frac{1}{4}\), maximum at \(x=\frac{3}{4}\) c. Concave up for \(−\frac{3}{4}<x<\frac{1}{4}\), concave down for \(x<−\frac{3}{4}\) and \(x>\frac{1}{4}\) d. Inflection points at \(x=−\frac{3}{4},x=\frac{1}{4}\)

    232) [T] \(f(x)=x+sin(2x)\) over \(x=[−\frac{π}{2},\frac{π}{2}]\)

    233) \(f(x)=sinx+tanx\) over \((−\frac{π}{2},\frac{π}{2})\)

    Answer:
    a. Increasing for all \(x\)
    b. No local minimum or maximum
    c. Concave up for \(x>0\), concave down for \(x<0\)
    d. Inflection point at \(x=0\)

    234) [T] \(f(x)=(x−2)^2(x−4)^2\)

    235) [T] \(f(x)=\frac{1}{1−x},x≠1\)

    Answer:
    a. Increasing for all \(x\) where defined
    b. No local minima or maxima
    c. Concave up for \(x<1\); concave down for \(x>1\)
    d. No inflection points in domain

    236) [T] \(f(x)=\frac{sinx}{x}\) over \(x=[−2π,2π] [2π,0)∪(0,2π]\)

    237) \(f(x)=sin(x)e^x\) over \(x=[−π,π]\)

    Answer:
    Solution: a. Increasing over \(−\frac{π}{4}<x<\frac{3π}{4}\), decreasing over \(x>\frac{3π}{4},x<−\frac{π}{4}\) b. Minimum at \(x=−\frac{π}{4}\), maximum at \(x=\frac{3π}{4}\) c. Concave up for \(−\frac{π}{2}<x<\frac{π}{2}\), concave down for \(x<−\frac{π}{2},x>\frac{π}{2}\) d. Infection points at \(x=±\frac{π}{2}\)

    238) \(f(x)=lnx\sqrt{x},x>0\)

    239) \(f(x)=\frac{1}{4}\sqrt{x}+\frac{1}{x},x>0\)

    Answer:
    Solution: a. Increasing over \(x>4,\) decreasing over \(0<x<4\) b. Minimum at \(x=4\) c. Concave up for \(0<x<8\sqrt[3]{2}\), concave down for \(x>8\sqrt[3]{2}\) d. Inflection point at \(x=8\sqrt[3]{2}\)

    240) \(f(x)=\frac{e^x}{x},x≠0\)

    For the following exercises, interpret the sentences in terms of \(f,f′,\) and \(f''.\)

    241) The population is growing more slowly. Here \(f\) is the population.

    Answer:
    \(f>0,f′>0,f''<0\)

    242) A bike accelerates faster, but a car goes faster. Here \(f=\) Bike’s position minus Car’s position.

    243) The airplane lands smoothly. Here \(f\) is the plane’s altitude.

    Answer:
    \(f>0,f′<0,f''<0\)

    244) Stock prices are at their peak. Here \(f\)is the stock price.

    245) The economy is picking up speed. Here \(f\) is a measure of the economy, such as GDP.

    Answer:
    \(f>0,f′>0,f''>0\)

    For the following exercises, consider a third-degree polynomial \(f(x),\) which has the properties f′(1)=0,f′(3)=0.

    Determine whether the following statements are true or false. Justify your answer.

    246) \(f(x)=0\) for some \(1≤x≤3\)

    247) \(f''(x)=0\) for some \(1≤x≤3\)

    Answer:
    True, by the Mean Value Theorem

    248) There is no absolute maximum at \(x=3\)

    249) If \(f(x)\) has three roots, then it has \(1\) inflection point.

    Answer:
    True, examine derivative

    250) If \(f(x)\) has one inflection point, then it has three real roots.


    4.3E: Shape of the Graph Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.