For the following exercises, examine the graphs. Identify where the vertical asymptotes are located.
251)

- Answer:
- \(x=1\)
252)

253)

- Answer:
- \(x=−1,x=2\)
254)

255)

- Answer:
- \(x=0\)
For the following functions \(f(x)\), determine whether there is an asymptote at \(x=a\). Justify your answer without graphing on a calculator.
256) \(f(x)=\frac{x+1}{x^2+5x+4},a=−1\)
257) \(f(x)=\frac{x}{x−2},a=2\)
- Answer:
- Yes, there is a vertical asymptote
258) \(f(x)=(x+2)^{3/2},a=−2\)
259) \(f(x)=(x−1)^{−1/3},a=1\)
- Answer:
- Yes, there is vertical asymptote
260) \(f(x)=1+x^{−2/5},a=1\)
For the following exercises, evaluate the limit.
261) \(\displaystyle \lim_{x→∞}\frac{1}{3x+6}\)
- Answer:
- \(0\)
262) \(\displaystyle \lim_{x→∞}\frac{2x−5}{4x}\)
263) \(\displaystyle \lim_{x→∞}\frac{x^2−2x+5}{x+2}\)
- Answer:
- \(∞\)
264) \(\displaystyle \lim_{x→−∞}\frac{3x^3−2x}{x^2+2x+8}\)
265) \(\displaystyle \lim_{x→−∞}\frac{x^4−4x^3+1}{2−2x^2−7x^4}\)
- Answer:
- \(−\frac{1}{7}\)
266) \(\displaystyle \lim_{x→∞}\frac{3x}{\sqrt{x^2+1}}\)
267) \(\displaystyle \lim_{x→−∞}\frac{\sqrt{4x^2−1}}{x+2}\)
- Answer:
- \(−2\)
268) \(\displaystyle \lim_{x→∞}\frac{4x}{\sqrt{x^2−1}}\)
269) \(\displaystyle \lim_{x→−∞}\frac{4x}{\sqrt{x^2−1}}\)
- Answer:
- \(−4\)
270) \(\displaystyle \lim_{x→∞}\frac{2\sqrt{x}}{x−\sqrt{x}+1}\)
For the following exercises, find the horizontal and vertical asymptotes.
271) \(f(x)=x−\frac{9}{x}\)
- Answer:
- Horizontal: none, vertical: \(x=0\)
272) \(f(x)=\frac{1}{1−x^2}\)
273) \(f(x)=\frac{x^3}{4−x^2}\)
- Answer:
- Horizontal: none, vertical: \(x=±2\)
274) \(f(x)=\frac{x^2+3}{x^2+1}\)
275) \(f(x)=sin(x)sin(2x)\)
- Answer:
- Horizontal: none, vertical: none
276) \(f(x)=cosx+cos(3x)+cos(5x)\)
277) \(f(x)=\frac{xsin(x)}{x^2−1}\)
- Answer:
- Horizontal: \(y=0,\) vertical: \(x=±1\)
278) \(f(x)=\frac{x}{sin(x)}\)
279) \(f(x)=\frac{1}{x^3+x^2}\)
- Answer:
- Horizontal: \(y=0,\) vertical: \(x=0\) and \(x=−1\)
280) \(f(x)=\frac{1}{x−1}−2x\)
281) \(f(x)=\frac{x^3+1}{x^3−1}\)
- Answer:
- Horizontal: \(y=1,\) vertical: \(x=1\)
282) \(f(x)=\frac{sinx+cosx}{sinx−cosx}\)
283) \(f(x)=x−sinx\)
- Answer:
- Horizontal: none, vertical: none
284) \(f(x)=\frac{1}{x}−\sqrt{x}\)
For the following exercises, construct a function \(f(x)\) that has the given asymptotes.
285) \(x=1\) and \(y=2\)
- Answer:
- Answers will vary, for example: \(y=\frac{2x}{x−1}\)
286) \(x=1\) and \(y=0\)
287) \(y=4, x=−1\)
- Answer:
- Answers will vary, for example: \(y=\frac{4x}{x+1}\)
288) \(x=0\)
CHAPTER REVIEW EXERCISES
CR 1) \(\displaystyle \lim_{x→∞}\frac{3x\sqrt{x^2+1}}{\sqrt{x^4−1}}\)
- Answer:
- \(3\)
CR 2) \(\displaystyle \lim_{x→∞}cos(\frac{1}{x})\)
CR 3) \(\displaystyle \lim_{x→1}\frac{x−1}{sin(πx)}\)
- Answer:
- \(−\frac{1}{π}\)
CR 4) \(\displaystyle \lim_{x→∞}(3x)^{1/x}\)