Skip to main content
Mathematics LibreTexts

temp

  • Page ID
    32308
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Riemann-Stieltjes integral

    FIXME: we’d need to redo a bunch of things from Riemann integral. Perhaps useful, but those are missing below and sort of make this more and more out of scope of the book.

    A common useful generalization of the Riemann integral is the Riemann-Stieltjes integral1. If we think of the Riemann integral as a sum where all terms are weighted equally, it is natural that we may want to do a weigthed sum. That is, we may wish to give some points “more weight” than to other points. A particular simple example of what we might want to accomplish is an integral which evaluates a function at a point. You may have seen this concept in your calculus class as the delta function.

    We will again define this integral using the Darboux approach for simplicity.

    Let \(f \colon [a,b] \to \R\) be a bounded function and let \(\alpha \colon [a,b] \to \R\) be a monotone increasing function. Let \(P\) be a partition of \([a,b]\), then define \[\begin{aligned} & m_i := \inf \{ f(x) : x_{i-1} \leq x \leq x_i \} , \\ & M_i := \sup \{ f(x) : x_{i-1} \leq x \leq x_i \} , \\ & L(P,f,\alpha) := \sum_{i=1}^n m_i \bigl( \alpha(x_i) - \alpha(x_{i-1}) \bigr) , \\ & U(P,f,\alpha) := \sum_{i=1}^n M_i \bigl( \alpha(x_i) - \alpha(x_{i-1}) \bigr) .\end{aligned}\] We call \(L(P,f,\alpha)\) the and \(U(P,f,\alpha)\) the . Then define \[\begin{aligned} & \underline{\int_a^b} f~d\alpha := \sup \{ L(P,f,\alpha) : P \text{ a partition of $[a,b]$} \} , \\ & \overline{\int_a^b} f~d\alpha := \inf \{ U(P,f,\alpha) : P \text{ a partition of $[a,b]$} \} .\end{aligned}\] And we call \(\underline{\int}\) the and \(\overline{\int}\) the . Finally, if \[\underline{\int_a^b} f~d\alpha = \overline{\int_a^b} f~d\alpha .\] Then we say that \(f\) is with respect to \(\alpha\).

    When we need to specify the variable of integration we may write \[\int_a^b f(x) ~d\alpha(x) .\]

    When we set \(\alpha(x) := x\) we recover the Riemann integral. The notation \(d\alpha\) suggests derivative, in this case \(\alpha'(x) = 1\) and as we said, the Riemann integral is when all points are weighted equally.

    If \(\alpha(x) := x\), then a bounded function \(f \colon [a,b] \to \R\) is Riemann integrable if and only if it is Riemann-Stieltjes integrable with respect to \(\alpha\). In this case \[\int_a^b f = \int_a^b f~d\alpha .\]

    Simply plug in \(\alpha(x) = x\) into the definition and note that the definition is now precisely the same as for the Riemann integral.

    Suppose that \(f \colon [a,b] \to \R\) is continuous. Given \(c \in (a,b)\), let \[\alpha(x) := \begin{cases} 1 & \text{if $x \geq c$,} \\ 0 & \text{if $x < c$.} \end{cases}\] We claim that \(f\) is Riemann-Stieltjes differentiable with respect to \(\alpha\) and that \[\int_a^b f~d\alpha = f(c) .\]

    Proof: Given \(\epsilon > 0\) take \(\delta > 0\) such that \(\abs{f(x)-f(c)} < \epsilon\) for all \(x \in [a,b]\) with \(\abs{x-c} < \delta\). Take the partition \(P = \{ a , c-\delta, c+\delta, b \}\). Then \[\begin{split} L(P,f,\alpha) & = m_1 \bigl( \alpha(c-\delta) - \alpha(a) \bigr) + m_2 \bigl( \alpha(c+\delta) - \alpha(c-\delta) \bigr) + m_3 \bigl( \alpha(b) - \alpha(c+\delta) \bigr) \\ & = m_2 \bigl( 1 - 0 ) = m_2 = \inf \{ f(x) : x \in [c-\delta,c+\delta] \} \\ & > f(c) - \epsilon . \end{split}\] Similarly \(U(P,f,\alpha) < f(c)+\epsilon\). Therefore \[U(P,f,\alpha)-L(P,f,\alpha) < 2 \epsilon .\]

    The notion of of integrability really does depend on \(\alpha\). For a very trivial example, it is not difficult to see that if \(\alpha(x) = 0\), then all bounded functions \(f\) on \([a,b]\) are integrable with respect to this \(\alpha\) and \[\int_a^b f~d \alpha = 0.\]

    If \(\alpha\) is very nice, we can recover the Riemann-Stieltjes integral using the Riemann integral.

    Suppose that \(f \colon [a,b] \to \R\) is Riemann integrable and \(\alpha \colon [a,b] \to \R\) is a continuously differentiable increasing function. Then \(f\) is Riemann-Stieltjes integrable with respect to \(\alpha\) and \[\int_a^b f(x)~d\alpha(x) = \int_a^b f(x) \alpha'(x)~dx .\]

    FIXME

    Exercises

    Directly from the definition of the Riemann-Stieltjes integral prove that if \(\alpha(x) = px\) for some \(p \geq 0\), then If \(f\) is Riemann integrable, then it is Riemann-Stieltjes integrable with respect to \(\alpha\) and \(p \int_a^b f = \int_a^b f~d\alpha\).

    Let \(\alpha \colon [a,b] \to \R\) and \(\beta \colon [a,b] \to \R\) be increasing functions and suppose that \(\alpha(x) = \beta(x) + C\) for some constant \(C\). If \(f \colon [a,b] \to \R\) is integrable with respect to \(\alpha\), show that it is integrable with respect to \(\beta\) and \(\int_a^b f~d\alpha = \int_a^b f~d\beta\).


    1. Named for ...

    temp is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?