# 7.4.E: Problems on Set Functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Exercise $$\PageIndex{1}$$

Prove Theorem 2 in detail for semirings.
[Hint: We know that
$X_{n}-X_{n-1}=\bigcup_{i=1}^{m_{n}} Y_{ni} \text { (disjoint)}$
for some $$Y_{ni} \in \mathcal{C},$$ so
$\overline{s}\left(X_{n}-X_{n-1}\right)=\sum_{i=1}^{m_{n}} s Y_{ni},$
with $$\overline{s}$$ as in Theorem 1.]

## Exercise $$\PageIndex{2}$$

Let $$s$$ be additive on $$\mathcal{M},$$ a ring. Prove that $$s$$ is also $$\sigma$$-additive provided $$s$$ is either
(i) left continuous, or
(ii) finite on $$\mathcal{M}$$ and right-continuous at $$\emptyset;$$ i.e.,
$\lim _{n \rightarrow \infty} s X_{n}=0$
when $$X_{n} \searrow \emptyset$$ $$\left(X_{n} \in \mathcal{M}\right)$$.
[Hint: Let
$A=\bigcup_{n} A_{n} \text { (disjoint)}, \quad A, A_{n} \in \mathcal{M}.$
Set
$X_{n}=\bigcup_{k=1}^{n} A_{k}, Y_{n}=A-X_{n}.$
Verify that $$X_{n}, Y_{n} \in \mathcal{M}, X_{n} \nearrow A, Y_{n} \searrow \emptyset$$.
In case (i),
$s A=\lim s X_{n}=\sum_{k=1}^{\infty} s A_{k}.$
(Why?)
For (ii), use the $$Y_{n}$$.]

## Exercise $$\PageIndex{3}$$

Let
$\mathcal{M}=\left\{\text {all intervals in the rational field } R \subset E^{1}\right\}.$
Let
$s X=b-a$
if $$a, b$$ are the endpoints of $$X \in \mathcal{M}$$ $$(a, b \in R, a \leq b).$$ Prove that
(i) $$\mathcal{M}$$ is a semiring;
(ii) $$s$$ is continuous;
(iii) $$s$$ is additive but not $$\sigma$$-additive; thus Problem 2 fails for semirings.
[Hint: $$R$$ is countable. Thus each $$X \in \mathcal{M}$$ is a countable union of singletons $$\{x\}=[x, x];$$ hence $$s X=0$$ if $$s$$ were $$\sigma$$-additive.]

## Exercise $$\PageIndex{3'}$$

Let $$N=$$ {naturals}. Let
$\mathcal{M}=\{\text {all finite subsets of } N \text { and their complements in } N\}.$
If $$X \in \mathcal{M},$$ let $$s X=0$$ if $$X$$ is finite, and $$s X=\infty$$ otherwise. Show that
(i) $$\mathcal{M}$$ is a set field;
(ii) $$s$$ is right continuous and additive, but not $$\sigma$$-additive.
Thus Problem 2 (ii) fails if $$s$$ is not finite.

## Exercise $$\PageIndex{4}$$

Let
$\mathcal{C}=\left\{\text {finite and infinite intervals in } E^{1}\right\}.$
If $$a, b$$ are the endpoints of an interval $$X$$ $$\left(a, b \in E^{*}, a<b\right),$$ set
$s X=\left\{\begin{array}{ll}{b-a,} & {a<b,} \\ {0,} & {a=b.}\end{array}\right.$
Show that $$s$$ is $$\sigma$$-additive on $$\mathcal{C},$$ a semiring.
Let
$X_{n}=(n, \infty);$
so $$s X_{n}=\infty-n=\infty$$ and $$X_{n} \searrow \emptyset.$$ (Verify!) Yet
$\lim s X_{n}=\infty \neq s \emptyset.$

## Exercise $$\PageIndex{5}$$

Fill in the missing proof details in Theorem 1.

## Exercise $$\PageIndex{6}$$

Let $$s$$ be additive on $$\mathcal{M}.$$ Prove the following.
(i) If $$\mathcal{M}$$ is a ring or semiring, so is
$\mathcal{N}=\{X \in \mathcal{M}| | s X |<\infty\}$
if $$\mathcal{N} \neq \emptyset$$.
(ii) If $$\mathcal{M}$$ is generated by a set family $$\mathcal{C},$$ with $$|s|<\infty$$ on $$\mathcal{C},$$ then $$|s|<\infty$$ on $$\mathcal{M}.$$
[Hint: Use Problem 16 in §3.]

## Exercise $$\PageIndex{7}$$

$$\Rightarrow$$ (Lebesgue-Stieltjes set functions.) Let $$\alpha$$ and $$s_{\alpha}$$ be as in Example (d). Prove the following.
(i) $$s_{\alpha} \geq 0$$ on $$\mathcal{C}$$ iff $$\alpha \uparrow$$ on $$E^{1}$$ (see Theorem 2 in Chapter 4, §5).
(ii) $$s_{\alpha}\{p\}=s_{\alpha}[p, p]=0$$ iff $$\alpha$$ is continuous at $$p$$.
(iii) $$s_{\alpha}$$ is additive.
[Hint: If
$A=\bigcup_{i=1}^{n} A_{i} \text { (disjoint),}$
the intervals $$A_{i-1}, A_{i}$$ must be adjacent. For two such intervals, consider all cases like
$(a, b] \cup(b, c),[a, b) \cup[b, c], \text { etc.}$
Then use induction on $$n$$.]
(iv) If $$\alpha$$ is right continuous at $$a$$ and $$b,$$ then
$s_{\alpha}(a, b]=\alpha(b)-\alpha(b).$
If $$\alpha$$ is continuous at $$a$$ and $$b,$$ then
$s_{\alpha}[a, b]=s_{\alpha}(a, b]=s_{\alpha}[a, b)=s_{\alpha}(a, b).$
(v) If $$\alpha \uparrow$$ on $$E^{1}$$, then $$s_{\alpha}$$ satisfies Lemma 1 and Corollary 2 in §1 (same proof), as well as Lemma 1, Theorem 1, Corollaries 1-4, and Note 3 in §2 (everything except Corollaries 5 and 6).
[Hint: Use (i) and (iii). For Lemma 1 in §2, take first a half-open $$B=(a, b];$$ use the definition of a right-side limit along with Theorems 1 and 2 in Chapter 4, §5, to prove
$(\forall \varepsilon>0)(\exists c>b) \quad 0 \leq \alpha(c-)-\alpha(b+)<\varepsilon;$
then set $$C=(a, c).$$ Similarly for $$B=[a, b),$$ etc. and for the closed interval $$A \subseteq B$$.]
(vi) If $$\alpha(x)=x$$ then $$s_{\alpha}=v,$$ the volume (or length) function in $$E^{1}$$.

## Exercise $$\PageIndex{8}$$

Construct LS set functions (Example (d)), with $$\alpha \uparrow$$ (see Problem 7(v)), so that
(i) $$s_{\alpha}[0,1] \neq s_{\alpha}[1,2]$$;
(ii) $$s_{\alpha} E^{1}=1$$ (after extending $$s_{\alpha}$$ to $$\mathcal{C}_{\sigma}-sets in \(E^{1}$$);
(ii') $$s_{\alpha} E^{1}=c$$ for a fixed $$c \in(0, \infty)$$;
(iii) $$s_{\alpha}\{0\}=1$$ and $$s_{\alpha}[0,1]>s_{\alpha}(0,1]$$.
Describe $$s_{\alpha}$$ if $$\alpha(x)=[x]$$ (the integral part of $$x$$).
[Hint: See Figure 16 in Chapter 4, §1.]

## Exercise $$\PageIndex{9}$$

For an arbitrary $$\alpha : E^{1} \rightarrow E^{1},$$ define $$\sigma_{\alpha} : \mathcal{C} \rightarrow E^{1}$$ by
$\sigma_{\alpha}[a, b]=\sigma_{\alpha}(a, b]=\sigma_{\sigma}[a, b)=\sigma_{\alpha}(a, b)=\alpha(b)-\alpha(a)$
(the original Stieltjes method). Prove that $$\sigma_{\alpha}$$ is additive but not $$\sigma$$-additive unless $$\alpha$$ is continuous (for Theorem 2 fails).

7.4.E: Problems on Set Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.