# 8.10.E: Problems on Generalized Integration

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Exercise $$\PageIndex{1}$$

Fill in the missing details in the proofs of this section. Prove Note 3.

## Exercise $$\PageIndex{2}$$

Treat Corollary 1 (ii) as a definition of
$\int_{A} f d s$
for $$s: \mathcal{M} \rightarrow E$$ and elementary and integrable $$f,$$ even if $$E \neq E^{n}\left(C^{n}\right) .$$
Hence deduce Corollary $$1(\mathrm{i})(\mathrm{vi})$$ for this more general case.

## Exercise $$\PageIndex{3}$$

Using Lemma 2 in §7, with $$m=v_{s}, s: \mathcal{M} \rightarrow E,$$ construct
$\int_{A} f d s$
as in Definition 2 of §7 for the case $$v_{s} A \neq \infty .$$ Show that this agrees with Problem 2 if $$f$$ is elementary and integrable. Then prove linearity for functions with $$v_{s}$$-finite support as in §7.

## Exercise $$\PageIndex{4}$$

Define
$\int_{A} f d s \quad(s: \mathcal{M} \rightarrow E)$
also for $$v_{s} A=\infty .$$
[Hint: Set $$\left.m=v_{s} \text { in Lemma } 3 \text { of } §7 .\right]$$

## Exercise $$\PageIndex{5}$$

Prove Theorems 1 to 3 for the general case, $$s: \mathcal{M} \rightarrow E$$ (see Problem 4 ).
[Hint: Argue as in §7.]

## Exercise $$\PageIndex{5'}$$

From Problems $$2-4,$$ deduce Definition 2 as a theorem in the case $$E=$$ $$E^{n}\left(C^{n}\right) .$$

## Exercise $$\PageIndex{6}$$

Let $$s, s_{k}: \mathcal{M} \rightarrow E(k=1,2, \ldots)$$ be any set functions. Let $$A \in \mathcal{M}$$ and
$\mathcal{M}_{A}=\{X \in \mathcal{M} | X \subseteq A\} .$
Prove that if
$\left(\forall X \in \mathcal{M}_{A}\right) \quad \lim _{k \rightarrow \infty} s_{k} X=s X ,$
then
$\lim _{k \rightarrow \infty} v_{s_{k}} A=v_{s} A ,$
provided $$\lim _{k \rightarrow \infty} v_{s_{k}}$$ exists.
[Hint: Using Problem 2 in Chapter 7, §11, fix a finite disjoint sequence $$\left\{X_{i}\right\} \subseteq \mathcal{M}_{A} .$$
Then
$\sum_{i}\left|s X_{i}\right|=\sum_{i} \lim _{k \rightarrow \infty}\left|s_{k} X_{i}\right|=\lim _{k \rightarrow \infty} \sum_{i}\left|s_{k} X_{i}\right| \leq \lim _{k \rightarrow \infty} v_{s_{k}} A .$
Infer that
$v_{s} A \leq \lim _{k \rightarrow \infty} v_{s k} A .$
Also,
$(\forall \varepsilon>0)\left(\exists k_{0}\right)\left(\forall k>k_{0}\right) \quad \sum_{i}\left|s_{k} X_{i}\right| \leq \sum_{i}\left|s X_{i}\right|+\varepsilon \leq v_{s} A+\varepsilon .$
Proceed.]

## Exercise $$\PageIndex{7}$$

Let $$(X, \mathcal{M}, m)$$ and $$(Y, \mathcal{N}, n)$$ be two generalized measure spaces $$(X \in$$ $$M, Y \in \mathcal{N}) \text { such that } m n \text { is defined (Note } 1) .$$ Set
$\mathcal{C}=\left\{A \times B | A \in \mathcal{M}, B \in \mathcal{N}, v_{m} A<\infty, v_{n} B<\infty\right\}$
and $$s(A \times B)=m A \cdot n B$$ for $$A \times B \in \mathcal{C}$$.
Define a Fubini map as in §8, Part IV, dropping, however, $$\int_{X \times Y} f d p$$ from Fubini property (c) temporarily.
Then prove Theorem 1 in §8, including formula $$(1),$$ for Fubini maps so modified.
[Hint: For $$\left.\sigma \text { -additivity, use our present Theorem } 2 \text { twice. Omit } \mathcal{P}^{*} .\right]$$

## Exercise $$\PageIndex{8}$$

Continuing Problem $$7,$$ let $$\mathcal{P}$$ be the $$\sigma$$-ring generated by $$\mathcal{C}$$ in $$X \times Y .$$ Prove that $$(\forall D \in \mathcal{P}) C_{D}$$ is a Fubini map (as modified).
[Outline: Proceed as in Lemma 5 of $$§8 . \text { For step (ii), use Theorem 2 in } §10 \text { twice. }]$$

## Exercise $$\PageIndex{9}$$

Further continuing Problems 7 and $$8,$$ define
$(\forall D \in \mathcal{P}) \quad p D=\int_{X} \int_{Y} C_{D} d n d m .$
Show that $$p$$ is a generalized measure, with $$p=s$$ on $$\mathcal{C},$$ and that
$(\forall D \in \mathcal{P}) \quad p D=\int_{X \times Y} C_{D} d p ,$
with the following convention: If $$X \times Y \notin \mathcal{P},$$ we set
$\int_{X \times Y} f d p=\int_{H} f d p$
whenever $$H \in \mathcal{P}, f$$ is $$p$$-integrable on $$H,$$ and $$f=0$$ on $$-H .$$
$$\quad$$ Verify that this is unambiguous, i.e.,
$\int_{X \times Y} f d p$
so defined is independent of the choice of $$H$$.
Finally, let $$\overline{p}$$ be the completion of $$p$$ (Chapter $$7,$$ §6, Problem 15 ); let $$\mathcal{P}^{*}$$ be its domain.
Develop the rest of Fubini theory "imitating" Problem 12 in §8.

## Exercise $$\PageIndex{10}$$

Signed Lebesgue-Stielttjes $$(L S)$$ measures in $$E^{1}$$ are defined as shown in Chapter 7, §11, Part $$V .$$ Using the notation of that section, prove the following:
(i) Given a Borel-Stieltjes measure $$\sigma_{\alpha}^{*}$$ in an interval $$I \subseteq E^{1}$$ (or an LS measure $$s_{\alpha}=\overline{\sigma}^{*}_{\alpha}$$ in $$I$$ ), there are two monotone functions $$g \uparrow$$ and $$h \uparrow(\alpha=g-h)$$ such that
$m_{g}=s_{\alpha}^{+} \text {and } m_{h}=s_{\alpha}^{-} ,$
both satisfying formula ( 3 ) of Chapter 7, §11, inside $$I$$.
(ii) If $$f$$ is $$s_{\alpha}$$-integrable on $$A \subseteq I,$$ then
$\int_{A} f d s_{\alpha}=\int_{A} f d m_{g}-\int_{A} f d m_{h}$
for any $$g \uparrow$$ and $$h \uparrow$$ (finite) such that $$\alpha=g-h$$.
[Hints: (i) Define $$s_{\alpha}^{+}$$ and $$s_{\alpha}^{-}$$ by formula (3) of Chapter $$7,$$ §7. Then arguing as in Theorem 2 in Chapter 7, §9, find $$g \uparrow$$ and $$h \uparrow$$ with $$m_{g}=s_{\alpha}^{+}$$ and $$m_{h}=s_{\alpha}^{-}$$.
(ii) First let $$A=(a, b] \subseteq I,$$ then $$A \in B .$$ Proceed.]

8.10.E: Problems on Generalized Integration is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.