# 8.3.E: Problems on Measurable Functions in $$(S, \mathcal{M}, m)$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Exercise $$\PageIndex{1}$$

Fill in all proof details in Corollaries 1 to 4.

## Exercise $$\PageIndex{1'}$$

Verify Notes 3 and 4.

## Exercise $$\PageIndex{2}$$

Prove Theorems 1 and 2 in §1 and Theorem 2 in §2, for almost measurable functions.

## Exercise $$\PageIndex{3}$$

Prove Note 2.
[Hint: If $$f: S \rightarrow E^{*}$$ is $$\mathcal{M}$$-measurable on $$B=A-Q(m Q=0, Q \subseteq A),$$ then $$A=B \cup Q$$ and
$\left(\forall a \in E^{*}\right) \quad A(f>a)=B(f>a) \cup Q(f>a) .$
Here $$B(f>a) \in \mathcal{M}$$ by Theorem 1 in §2, and $$Q(f>a) \in \mathcal{M}$$ if $$m$$ is complete. For $$\left.f: S \rightarrow E^{n}\left(C^{n}\right), \text { use Theorem } 2 \text { of } §1 .\right]$$

## Exercise $$\PageIndex{4}$$

*4. Show that if $$m$$ is complete and $$f: S \rightarrow\left(T, \rho^{\prime}\right)$$ is $$m$$-measurable on $$A$$ with $$f[A]$$ separable in $$T,$$ then $$f$$ is $$\mathcal{M}$$ -measurable on $$A .$$
[Hint: Use Problem $$13 \text { in } §2 .]$$

## Exercise $$\PageIndex{5}$$

*5. Prove Theorem 1 for $$f: S \rightarrow\left(T, \rho^{\prime}\right),$$ assuming that $$f[A]$$ is separable in $$T .$$

## Exercise $$\PageIndex{6}$$

Given $$f_{n} \rightarrow f(\text { a.e. })$$ on $$A,$$ prove that $$f_{n} \rightarrow g(\text { a.e. })$$ on $$A$$ iff $$f=g(\text { a.e. })$$ on $$A .$$

## Exercise $$\PageIndex{7}$$

Given $$A \in \mathcal{M}$$ in $$(S, \mathcal{M}, m),$$ let $$m_{A}$$ be the restriction of $$m$$ to
$\mathcal{M}_{A}=\{X \in \mathcal{M} | X \subseteq A\} .$
Prove that
(i) $$\left.\left(A, \mathcal{M}_{A}, m_{A}\right) \text { is a measure space (called a subspace of }(S, \mathcal{M}, m)\right)$$;
(ii) if $$m$$ is complete, topological, $$\sigma$$-finite or (strongly) regular, so is $$m_{A}$$.

## Exercise $$\PageIndex{8}$$

(i) Show that if $$D \subseteq K \subseteq\left(T, \rho^{\prime}\right),$$ then the closure of $$D$$ in the subspace $$\left(K, \rho^{\prime}\right)$$ is $$K \cap \bar{D},$$ where $$\bar{D}$$ is the closure of $$D$$ in $$\left(T, \rho^{\prime}\right) .$$
[Hint: Use Problem $$11 \text { in Chapter } 3, §16 .]$$
(ii) Prove that if $$B \subseteq K$$ and if $$B$$ is separable in $$\left(T, \rho^{\prime}\right),$$ it is so in $$\left(K, \rho^{\prime}\right) .$$
[Hint: Use Problem 7 from $$\xi 1$$.]

## Exercise $$\PageIndex{9}$$

*9. Fill in all proof details in Lemma 4.

## Exercise $$\PageIndex{10}$$

Simplify the proof of Theorem 2 for the case $$m A<\infty .$$
[Outline: (i) First, let $$f$$ be elementary, with $$f=a_{i}$$ on $$A_{i} \in \mathcal{M}, A=\cup_{i} A_{i}$$ (disjoint), $$\sum m A_{i}=m A<\infty$$.
Given $$\varepsilon>0$$
$(\exists n) \quad m A-\sum_{i=1}^{n} m A_{i}<\frac{1}{2} \varepsilon .$
Each $$A_{i}$$ has a closed subset $$F_{i} \in \mathcal{M}$$ with $$m\left(A_{i}-F_{i}\right)<\varepsilon / 2 n .$$ (Why?) Now use Problem 17 in Chapter 4, §8, and set $$F=\bigcup_{i=1}^{n} F_{i} .$$
(ii) If $$f$$ is $$\mathcal{M}$$ -measurable on $$H=A-Q, m Q=0,$$ then by Theorem 3 in $$\xi 1,$$
$$f_{n} \rightarrow f$$ (uniformly) on $$H$$ for some elementary maps $$f_{n} .$$ By $$(i),$$ each $$f_{n}$$ is relatively continuous on a closed $$\mathcal{M}$$-set $$F_{n} \subseteq H,$$ with $$m H-m F_{n}<\varepsilon / 2^{n} ;$$ so all $$f_{n}$$ are relatively continuous on $$F=\bigcap_{n=1}^{\infty} F_{n} .$$ Show that $$F$$ is the required set.

## Exercise $$\PageIndex{11}$$

Given $$f_{n}: S \rightarrow\left(T, \rho^{\prime}\right), n=1,2, \ldots,$$ we say that
(i) $$f_{n} \rightarrow f$$ almost uniformly on $$A \subseteq S$$ iff
$(\forall \delta>0)(\exists D \in \mathcal{M} | m D<\delta) \quad f_{n} \rightarrow f(\text {uniformly}) \text { on } A-D ;$
(ii) $$f_{n} \rightarrow f$$ in measure on $$A$$ iff
\begin{aligned}(\forall \delta, \sigma>0)(\exists k)(\forall n>k)\left(\exists D_{n} \in \mathcal{M} | m D_{n}<\delta\right) \\ \rho^{\prime}\left(f, f_{n}\right)<\sigma \text { on } A-D_{n} . \end{aligned}
Prove the following.
(a) $$f_{n} \rightarrow f$$ (uniformly) implies $$f_{n} \rightarrow f$$ (almost uniformly), and the latter implies both $$f_{n} \rightarrow f\left(\text { in measure) and } f_{n} \rightarrow f(a . e .) .\right.$$
(b) Given $$f_{n} \rightarrow f$$ (almost uniformly), we have $$f_{n} \rightarrow g$$ (almost uniformly) iff $$f=g(\text { a.e. }) ;$$ similarly for convergence in measure.
(c) If $$f$$ and $$f_{n}$$ are $$\mathcal{M}$$ -measurable on $$A,$$ then $$f_{n} \rightarrow f$$ in measure on $$A$$ iff
$(\forall \sigma>0) \quad \lim _{n \rightarrow \infty} m A\left(\rho^{\prime}\left(f, f_{n}\right) \geq \sigma\right)=0 .$

## Exercise $$\PageIndex{12}$$

Assuming that $$f_{n}: S \rightarrow\left(T, \rho^{\prime}\right)$$ is $$m$$ -measurable on $$A$$ for $$n=1,2, \ldots,$$ that $$m A<\infty,$$ and that $$f_{n} \rightarrow f(a . e .)$$ on $$A,$$ prove the following.
(i) Lebesgue's theorem: $$f_{n} \rightarrow f$$ (in measure) on $$A$$ (see Problem 11 ).
(ii) Egorov's theorem: $$f_{n} \rightarrow f$$ (almost uniformly) on $$A$$.
[Outline: (i) $$\left.f_{n} \text { and } f \text { are } \mathcal{M} \text { -measurable on } H=A-Q, m Q=0 \text { (Corollary } 1\right),$$ with $$f_{n} \rightarrow f$$ (pointwise) on $$H .$$ For all $$i, k,$$ set
$H_{i}(k)=\bigcap_{n=i}^{\infty} H\left(\rho^{\prime}\left(f_{n}, f\right)<\frac{1}{k}\right) \in \mathcal{M}$
by Problem 6 in $$\text { §1. Show that ( } \forall k) H_{i}(k) \nearrow H$$; hence
$\lim _{i \rightarrow \infty} m H_{i}(k)=m H=m A<\infty ;$
so
$(\forall \delta>0)(\forall k)\left(\exists i_{k}\right) \quad m\left(A-H_{i_{k}}(k)\right)<\frac{\delta}{2^{k}} ,$
proving $$(\mathrm{i}),$$ since
$\left(\forall n>i_{k}\right) \quad \rho^{\prime}\left(f_{n}, f\right)<\frac{1}{k} \text { on } H_{i_{k}}(k)=A-\left(A-H_{i_{k}}(k)\right) .$
(ii) Continuing, set $$(\forall k) D_{k}=H_{i_{k}}(k)$$ and
$D=A-\bigcap_{k=1}^{\infty} D_{k}=\bigcup_{k=1}^{\infty}\left(A-D_{k}\right) .$
Deduce that $$D \in \mathcal{M}$$ and
$m D \leq \sum_{k=1}^{\infty} m\left(A-H_{i_{k}}(k)\right)<\sum_{k=1}^{\infty} \frac{\delta}{2^{k}}=\delta .$
Now, from the definition of the $$H_{i}(k),$$ show that $$f_{n} \rightarrow f$$ (uniformly) on $$A-D,$$ proving (ii). $$]$$

## Exercise $$\PageIndex{13}$$

Disprove the converse to Problem $$12(\mathrm{i})$$.
[Outline: Assume that $$A=[0,1) ;$$ for all $$0 \leq k$$ and all $$0 \leq i<2^{k},$$ set
$g_{i k}(x)=\left\{\begin{array}{ll}{1} & {\text { if } \frac{i-1}{2^{k}} \leq x<\frac{i}{2^{k}}} \\ {0} & {\text { otherwise }}\end{array}\right.$
Put the $$g_{i k}$$ in a single sequence by
$f_{2^{k}+i}=g_{i k} .$
Show that $$f_{n} \rightarrow 0$$ in L measure on $$A,$$ yet for no $$x \in A$$ does $$f_{n}(x)$$ converge as $$n \rightarrow \infty .]$$

## Exercise $$\PageIndex{14}$$

Prove that if $$f: S \rightarrow\left(T, \rho^{\prime}\right)$$ is $$m$$ -measurable on $$A$$ and $$g: T \rightarrow\left(U, \rho^{\prime \prime}\right)$$ is relatively continuous on $$f[A],$$ then $$g \circ f: S \rightarrow\left(U, \rho^{\prime \prime}\right)$$ is $$m$$-measurable on $$A .$$
[Hint: Use Corollary 4 in §1.]

8.3.E: Problems on Measurable Functions in $$(S, \mathcal{M}, m)$$ is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.