Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

8.4: Integration of Elementary Functions

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

In Chapter 5, integration was treated as antidifferentiation. Now we adopt another, measure-theoretical approach.

Lebesgue's original theory was based on Lebesgue measure (Chapter 7, §8). The more general modern treatment develops the integral for functions f : S \rightarrow E in an arbitrary measure space. Henceforth, (S, \mathcal{M}, m) is fixed, and the range space E is E^{1}, E^{*}, C, E^{n}, or another complete normed space. Recall that in such a space, \sum_{i}\left|a_{i}\right|<\infty implies that \sum a_{i} converges and is permutable (Chapter 7, §2).

We start with elementary maps, including simple maps as a special case.

Definition

Let f : S \rightarrow E be elementary on A \in \mathcal{M}; so f=a_{i} on A_{i} for some \mathcal{M}-partition

A=\bigcup_{i} A_{i} \text { (disjoint).}

(Note that there may be many such partitions.)

We say that f is integrable (with respect to m), or m-integrable, on A iff

\sum\left|a_{i}\right| m A_{i}<\infty.

(The notation "|a_{i}| m A_{i}" always makes sense by our conventions (2*) in Chapter 4, §4.) If m is Lebesgue measure, then we say that f is Lebesgue integrable, or L-integrable.

We then define \int_{A} f, the m-integral of f on A, by

\int_{A} f=\int_{A} f d m=\sum_{i} a_{i} m A_{i}.

(The notation "dm" is used to specify the measure m.)

The "classical" notation for \int_{A} f d m is \int_{A} f(x) d m(x).

Note 1. The assumption

\sum\left|a_{i}\right| m A_{i}<\infty

implies

(\forall i) \quad\left|a_{i}\right| m A_{i}<\infty;

so a_{i}=0 if m A_{i}=\infty, and m A_{i}=0 if |a_{i}|=\infty. Thus by our conventions, all "bad" terms a_{i} m A_{i} vanish. Hence the sum in (1) makes sense and is finite.

Note 2. This sum is also independent of the particular choice of \{A_{i}\}. For if \{B_{k}\} is another \mathcal{M}-partition of A, with f=b_{k} on B_{k}, say, then f=a_{i}=b_{k} on A_{i} \cap B_{k} whenever A_{i} \cap B_{k} \neq \emptyset. Also,

(\forall i) \quad A_{i}=\bigcup_{k}\left(A_{i} \cap B_{k}\right) \text { (disjoint);}

so

(\forall i) \quad a_{i} m A_{i}=\sum_{k} a_{i} m(A_{i} \cap B_{k}),

and hence (see Theorem 2 of Chapter 7, §2, and Problem 11 there)

\sum_{i} a_{i} m A_{i}=\sum_{i} \sum_{k} a_{i} m\left(A_{i} \cap B_{k}\right)=\sum_{k} \sum_{i} b_{k} m\left(A_{i} \cap B_{k}\right)=\sum_{k} b_{k} m B_{k}.

(Explain!)

This makes our definition (1) unambiguous and allows us to choose any \mathcal{M}-partition \{A_{i}\}, with f constant on each A_{i}, when forming integrals (1).

Corollary \PageIndex{1}

Let f : S \rightarrow E be elementary and integrable on A \in \mathcal{M}. Then the following statements are true.

(i) |f|<\infty a.e. on A.

(ii) f and |f| are elementary and integrable on any \mathcal{M}-set B \subseteq A, and

\left|\int_{B} f\right| \leq \int_{B}|f| \leq \int_{A}|f|.

(iii) The set B=A(f \neq 0) is \sigma-finite (Definition 4 in Chapter 7, §5), and

\int_{A} f=\int_{B} f.

(iv) If f=a (constant) on A,

\int_{A} f=a \cdot m A.

(v) \int_{A}|f|=0 iff f=0 a.e. on A.

(vi) If m Q=0, then

\int_{A} f=\int_{A-Q} f

(so we may neglect sets of measure 0 in integrals).

(vii) For any k in the scalar field of E, k f is elementary and integrable, and

\int_{A} k f=k \int_{A} f.

Note that if f is scalar valued, k may be a vector. If E=E^{*}, we assume k \in E^{1}.

Proof

(i) By Note 1, |f|=|a_{i}|=\infty only on those A_{i} with m A_{i}=0. Let Q be the union of all such A_{i}. Then m Q=0 and |f|<\infty on A-Q, proving (i).

(ii) If \{A_{i}\} is an \mathcal{M}-partition of A,\{B \cap A_{i}\} is one for B. (Verify!) We have f=a_{i} and |f|=|a_{i}| on B \cap A_{i} \subseteq A_{i}.

Also,

\sum\left|a_{i}\right| m\left(B \cap A_{i}\right) \leq \sum\left|a_{i}\right| m A_{i}<\infty.

(Why?) Thus f and |f| are elementary and integrable on B, and (ii) easily follows by formula (1).

(iii) By Note 1, f=0 on A_{i} if m A_{i}=\infty. Thus f \neq 0 on A_{i} only if m A_{i}<\infty. Let \{A_{i_{k}}\} be the subsequence of those A_{i} on which f \neq 0; so

(\forall k) \quad m A_{i_{k}}<\infty.

Also,

B=A(f \neq 0)=\bigcup_{k} A_{i_{k}} \in \mathcal{M} \text{ (}\sigma \text {-finite!).}

By (ii), f is elementary and integrable on B. Also,

\int_{B} f=\sum_{k} a_{i_{k}} m A_{i_{k}},

while

\int_{A} f=\sum_{i} a_{i} m A_{i}.

These sums differ only by terms with a_{i}=0. Thus (iii) follows.

The proof of (iv)-(vii) is left to the reader.\quad \square

Note 3. If f : S \rightarrow E^{*} is elementary and sign-constant on A, we also allow that

\int_{A} f=\sum_{i} a_{i} m A_{i}=\pm \infty.

Thus here \int_{A} f exists even if f is not integrable. Apart from claims of integrability and \sigma-finiteness, Corollary 1(ii)-(vii) hold for such f, with the same proofs.

Example

Let m be Lebesgue measure in E^{1}. Define f=1 on R (rationals) and f=0 on E^{1}-R ; see Chapter 4, §1, Example (c). Let A=[0,1].

By Corollary 1 in Chapter 7, §8, A \cap R \in \mathcal{M}^{*} and m(A \cap R)=0. Also, A-R \in \mathcal{M}^{*}.

Thus \{A \cap R, A-R\} is an \mathcal{M}^{*}-partition of A, with f=1 on A \cap R and f=0 on A-R.

Hence f is elementary and integrable on A, and

\int_{A} f=1 \cdot m(A \cap R)+0 \cdot m(A-R)=0.

Thus f is L-integrable (even though it is nowhere continuous).

Theorem \PageIndex{1} (additivity)

(i) If f : S \rightarrow E is elementary and integrable or elementary and nonnegative on A \in \mathcal{M}, then

\int_{A} f=\sum_{k} \int_{B_{k}} f

for any \mathcal{M}-partition \left\{B_{k}\right\} of A.

(ii) If f is elementary and integrable on each set B_{k} of a finite \mathcal{M}-partition

A=\bigcup_{k} B_{k},

it is elementary and integrable on all of A, and (2) holds again.

Proof

(i) If f is elementary and integrable or elementary and nonnegative on A=\bigcup_{k} B_{k}, it is surely so on each B_{k} by Corollary 2 of §1 and Corollary 1(ii) above.

Thus for each k, we can fix an \mathcal{M}-partition B_{k}=\bigcup_{i} A_{k i}, with f constant (f=a_{k i}) on A_{k i}, i=1,2, \ldots. Then

A=\bigcup_{k} B_{k}=\bigcup_{k} \bigcup_{i} A_{k i}

is an \mathcal{M}-partition of A into the disjoint sets A_{k i} \in \mathcal{M}.

Now, by definition,

\int_{B_{k}} f=\sum_{i} a_{k i} m A_{k i}

and

\int_{A} f=\sum_{k, i} a_{k i} m A_{k i}=\sum_{k}\left(\sum_{i} a_{k i} m A_{k i}\right)=\sum_{k} \int_{B_{k}} f

by rules for double series. This proves formula (2).

(ii) If f is elementary and integrable on B_{k}(k=1, \ldots, n), then with the same notation, we have

\sum_{i}\left|a_{k i}\right| m A_{k i}<\infty

(by integrability); hence

\sum_{k=1}^{n} \sum_{i}\left|a_{k i}\right| m A_{k i}<\infty.

This means, however, that f is elementary and integrable on A, and so clause (ii) follows.\quad \square

Caution. Clause (ii) fails if the partition \{B_{k}\} is infinite.

Theorem \PageIndex{2}

(i) If f, g : S \rightarrow E^{*} are elementary and nonnegative on A, then

\int_{A}(f+g)=\int_{A} f+\int_{A} g.

(ii) If f, g : S \rightarrow E are elementary and integrable on A, so is f \pm g, and

\int_{A}(f \pm g)=\int_{A} f \pm \int_{A} g.

Proof

Arguing as in the proof of Theorem 1 of §1, we can make f and g constant on sets of one and the same \mathcal{M}-partition of A, say, f=a_{i} and g=b_{i} on A_{i} \in \mathcal{M}; so

f \pm g=a_{i} \pm b_{i} \text { on } A_{i}, \quad i=1,2, \ldots.

In case (i), f, g \geq 0; so integrability is irrelevant by Note 3, and formula (1) yields

\int_{A}(f+g)=\sum_{i}\left(a_{i}+b_{i}\right) m A_{i}=\sum_{i} a_{i} m A_{i}+\sum b_{i} m A_{i}=\int_{A} f+\int_{A} g.

In (ii), we similarly obtain

\sum_{i}\left|a_{i} \pm b_{i}\right| m A_{i} \leq \sum\left|a_{i}\right| m A_{i}+\sum_{i}\left|b_{i}\right| m A_{i}<\infty.

(Why?) Thus f \pm g is elementary and integrable on A. As before, we also get

\int_{A}(f \pm g)=\int_{A} f \pm \int_{A} g,

simply by rules for addition of convergent series. (Verify!)\quad \square

Note 4. As we know, the characteristic function C_{B} of a set B \subseteq S is defined

C_{B}(x)=\left\{\begin{array}{ll}{1,} & {x \in B,} \\ {0,} & {x \in S-B.}\end{array}\right.

If g : S \rightarrow E is elementary on A, so that

g=a_{i} \text { on } A_{i}, 1,2, \ldots,

for some \mathcal{M}-partition

A=\bigcup A_{i},

then

g=\sum_{i} a_{i} C_{A_{i}} \text { on } A.

(This sum always exists for disjoint sets A_{i}. Why?) We shall often use this notation.

Screen Shot 2019-07-12 at 5.06.00 PM.png

If m is Lebesgue measure in E^{1}, the integral

\int_{A} g=\sum_{i} a_{i} m A_{i}

has a simple geometric interpretation; see Figure 33. Let A=[a, b] \subset E^{1}; let g be bounded and nonnegative on E^{1}. Each product a_{i} m A_{i} is the area of a rectangle with base A_{i} and altitude a_{i}. (We assume the A_{i} to be intervals here.) The total area,

\int_{A} g=\sum_{i} a_{i} m A_{i},

can be treated as an approximation to the area under some curve y=f(x), where f is approximated by g (Theorem 3 in §1). Integration historically arose from such approximations.

Integration of elementary extended-real functions. Note 3 can be extended to sign-changing functions as follows.

Definition

If

f=\sum_{i} a_{i} C_{A_{i}} \quad\left(a_{i} \in E^{*}\right)

on

A=\bigcup_{i} A_{i} \quad\left(A_{i} \in \mathcal{M}\right),

we set

\int_{A} f=\int_{A} f^{+}-\int_{A} f^{-},

with

f^{+}=f \vee 0 \geq 0 \text { and } f^{-}=(-f) \vee 0 \geq 0;

see §2.

By Theorem 2 in §2, f^{+} and f^{-} are elementary and nonnegative on A; so

\int_{A} f^{+} \text { and } \int_{A} f^{-}

are defined by Note 3, and so is

\int_{A} f=\int_{A} f^{+}-\int_{A} f^{-}

by our conventions (2*) in Chapter 4, §4.

We shall have use for formula (3), even if

\int_{A} f^{+}=\int_{A} f^{-}=\infty;

then we say that \int_{A} f is unorthodox and equate it to +\infty, by convention; cf. Chapter 4, §4. (Other integrals are called orthodox.) Thus for elementary and (extended) real functions, \int_{A} f is always defined. (We further develop this idea in §5.)

Note 5. With f as above, we clearly have

f^{+}=a_{i}^{+} \text { and } f^{-}=a_{i}^{-} \text { on } A_{i},

where

a_{i}^{+}=\max \left(a_{i}, 0\right) \text { and } a_{i}^{-}=\max \left(-a_{i}, 0\right).

Thus

\int_{A} f^{+}=\sum a_{i}^{+} \cdot m A_{i} \text { and } \int_{A} f^{-}=\sum a_{i}^{-} \cdot m A_{i},

so that

\int_{A} f=\int_{A} f^{+}-\int_{A} f^{-}=\sum_{i} a_{i}^{+} \cdot m A_{i}-\sum_{i} a_{i}^{-} \cdot m A_{i}.

If \int_{A} f^{+}<\infty or \int_{A} f^{-}<\infty, we can subtract the two series termwise (Problem 14 of Chapter 4, §13) to obtain

\int_{A} f=\sum_{i}\left(a_{i}^{+}-a_{i}^{-}\right) m A_{i}=\sum_{i} a_{i} m A_{i}

for a_{i}^{+}-a_{i}^{-}=a_{i}. Thus formulas (3) and (4) agree with our previous definitions.


8.4: Integration of Elementary Functions is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?