Skip to main content
Mathematics LibreTexts

1.8: Solution to the dynamic equation Pₜ₊₁-Pₜ=rPₜ + b

  • Page ID
    38397
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The general form of the dynamic equation of the previous section is,

    \[P_{t+1}-P_{t}=r P_{t}+b, \quad t=0,1, \cdots, \quad P_{0} \quad \text { a known value } \label{1.24}\]

    The constant b represents influence from outside the system, such as flow or immigration into (b > 0) or flow or emigration out of (b < 0) the system.

    Suppose \(r \neq 0\) and \(b \neq 0\). We convert

    \[P_{t+1}-P_{t}=r P_{t}+b\]

    to iteration form

    \[P_{t+1}=R P_{t}+b, \quad \text { where } \quad R=r+1 \label{1.25}\]

    Next we look for an equilibrium value E satisfying

    \[E=R E+b \label{1.26}\]

    (Think, if \(P_{t} = E\) then \(P_{t+1} = E\).) We can solve for E

    \[E=\frac{b}{1-R}=-\frac{b}{r} \label{1.27}\]

    Now subtract Equation \ref{1.26} from Equation \ref{1.25}.

    \[\begin{aligned}
    P_{t+1} &=R P_{t}+b \\
    E &=R E+b
    \end{aligned}\]

    \[P_{t+1}-E=R\left(P_{t}-E\right) \label{1.28}\]

    Let \(D_{t} = P_{t} − E\) and write

    \[D_{t+1}=R D_{t}\]

    This is iteration Equation 1.2.4 with DT instead of \(P_t\) and the solution is

    \[D_{t}=R^{t} D_{0}\]

    Remembering that \(D_{t} = P_{t} − E\) and \(E = \frac{b}{(1 − R)} = −\frac{b}{r}\) and \(R = 1 + r\) we write

    \[P_{t}-E=R^{t}\left(P_{0}-E\right), \quad P_{t}=-\frac{b}{r}+\left(P_{0}+\frac{b}{r}\right)(1+r)^{t} \label{1.29}\]

    You are asked to show in Exercise 1.8.2 that the solution to

    \[P_{t+1}-P_{t}=b \quad \text { is } \quad P_{t}=P_{0}+t b \label{1.30}\]

    Exercises for Section 1.8, Solution to the dynamic equation, \(P_{t+1}-P_{t}=r P_{t}+b\)

    Exercise 1.8.1 Write a solution equation for the following initial conditions and difference equations or iteration equations. In each case, compute \(B_{100}\).

    1. \(B_{0}=100 \quad B_{t+1}-B_{t}=0.2 B_{t}+5\)
    2. \(B_{0}=138 \quad B_{t+1}-B_{t}=0.05 B_{t}+10\)
    3. \(B_{0}=138 \quad B_{t+1}-B_{t}=0.5 B_{t}-10\)
    4. \(B_{0}=100 \quad B_{t+1}-B_{t}=10\)
    5. \(B_{0}=100 \quad B_{t+1}=1.2 B_{t}-5\)
    6. \(B_{0}=100 \quad B_{t+1}-B_{t}=-0.1 B_{t}+10\)
    7. \(B_{0}=100 \quad B_{t+1}=0.9 B_{t}-10\)
    8. \(B_{0}=100 \quad B_{t+1}=-0.8 B_{t}+20\)

    Exercise 1.8.2 Equation \ref{1.30}

    \[P_{t+1}-P_{t}=b\]

    represents a large number of equations

    \[\begin{aligned}
    P_{1}-P_{0} &=b \\
    P_{2}-P_{1} &=b \\
    P_{3}-P_{2} &=b \\
    \vdots \\
    P_{n-1}-P_{n-2} &=b \\
    P_{n}-P_{n-1} &=b
    \end{aligned}\]

    Add these equations to obtain

    \[P_{n}=P_{0}+n b\]

    Substitute t for n to obtain

    \[P_{t}=P_{0}+t b\]

    Exercise 1.8.3 Suppose a quail population would grow at 20% per year without hunting pressure, and 1000 birds per year are harvested. Describe the progress of the population over 5 years if initially there are

    1. 5000 birds
    2. 6000 birds
    3. 4000 birds

    This page titled 1.8: Solution to the dynamic equation Pₜ₊₁-Pₜ=rPₜ + b is shared under a CC BY-NC-ND license and was authored, remixed, and/or curated by James L. Cornette & Ralph A. Ackerman.

    • Was this article helpful?