1.2: Solution to the dynamic equation \(P_{t+1} − P_{t} = r P_{t}\).
- Page ID
- 36832
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The dynamic equation with initial condition, \(P_0\),
\[P_{t+1}-P_{t}=r P_{t}, \quad t=0,1, \cdots, \quad P_{0} \quad \text { a known value } \label{1.6}\]
arises in many models of elementary biological processes. A solution to the dynamic equation \ref{1.6} is a formula for computing \(P_t\) in terms of \(t\) and \(P_0\).
Assume that \(r \neq 0\) and \(P_{0} \neq 0\). The equation \(P_{t+1}-P_{t}=r P_{t}\) can be changed to iteration form by
\[\begin{align}
P_{t+1}-P_{t} &=r P_{t} \\
P_{t+1} &=(r+1) P_{t} \\
P_{t+1} &=R P_{t}
\end{align} \label{1.7}\]
where \(R = r + 1\). The equation \(P_{t+1} = R P_t\) is valid for \(t = 0, t = 1, ... \) and represents a large number of equations, as in
\[\left.\begin{array} \\
P_{1} =R P_{0} && t=0 \\
P_{2} =R P_{1} && t=1 \\
\vdots && \vdots \\
P_{n-1} =R P_{n-2} && t=n-2 \\
P_{n} =R P_{n-1} && t=n-1
\end{array}\right) \label{1.8}\]
where \(n\) can be any stopping value.
Cascading equations. These equations \ref{1.8} may be ‘cascaded’ as follows.
- The product of all the numbers on the left sides of Equations 1.8 is equal to the product of all of the numbers on the right sides. Therefore \[P_{1} \times P_{2} \times \cdots \times P_{n-1} \times P_{n}=R P_{0} \times R P_{1} \times \cdots \times R P_{n-2} \times R P_{n-1}\]
- The previous equation may be rearranged to \[P_{1} P_{2} \cdots P_{n-1} P_{n}=R^{n} P_{0} P_{1} \cdots P_{n-2} P_{n-1}\].
- \(P_{1}, P_{2}, \cdots P_{n-1}\) are factors on both sides of the equation and (assuming no one of them is zero) may be divided from both sides of the equation, leaving \[P_{n}=R^{n} P_{0}\] Because n is arbitrary and the dynamic equation is written with \(t\), we write \[P_{t}=R^{t} P_{0}=P_{0}(1+r)^{t} \label{1.9}\] as the solution to the iteration \[P_{t+1}=R P_{t} \quad \text { with initial value, } P_{0}\] and the solution to \[P_{t+1}-P_{t}=r P_{t} \quad \text{ with initial value, } P_{0}\].
Explore 1.2.1
- Suppose \(r = 0\) in \(P_{t+1} − P_{t} = r P_{t}\) so that \(P_{t+1} − P_{t} = 0\). What are \(P_{1}, P_{2}, \cdots\)?
- Suppose \(P_{0} = 0\), and \(P_{t+1} − P_{t} = r P_{t}\) for \(t = 0, 1, 2, \cdots\). What are \(P_{1}, P_{2}, \cdots\)?
Example 1.2.1 Suppose a human population is growing at 1% per year and initially has 1,000,000 individuals. Let \(P_t\) denote the populations size \(t\) years after the initial population of \(P_{0} = 1, 000, 000\) individuals. If one asks what the population will be in 50 years there are two options.
- Option 1. At 1% per year growth, the dynamic equation would be \[P_{t+1}-P_{t}=0.01 P_{t}\] and the corresponding iteration equation is \[P_{t+1}=1.01 P_{t}\] With \(P_{0}=1,000,000, P_{1}=1.01 \times 1,000,000=1,010,000, P_{2}=1.01 \times 1,010,000=1,020,100\) and so on for 50 iterations.
- Option 2. Alternatively, one may write the solution \[P_{t}=1.01^{t}(1,000,000)\] so that \[P_{50}=1.01^{50}(1,000,000)=1,644,631\] The algebraic form of the solution, \(P_{t}=R^{t} P_{0}\) with \(r>0\) and \(R>1\) is informative and gives rise to the common description of exponential growth attached to some populations. If \(r\) is negative and \(R=1+r<1\), the solution equation \(P_{t}=R^{t} P_{0}\) exhibits exponential decay.
Exercises for Section 1.2, Solution to the dynamic equation, \(P_{t+1}-P_{t}=r P_{t}\)
Exercise 1.2.1 Write a solution equation for the following initial conditions and difference equations or iteration equations. In each case, compute \(B_100\).
- \(B_{0}=1,000 \quad B_{t+1}-B_{t}=0.2 B_{t}\)
- \(B_{0}=138 \quad B_{t+1}-B_{t}=0.05 B_{t}\)
- \(B_{0}=138 \quad B_{t+1}-B_{t}=0.5 B_{t}\)
- \(B_{0}=1,000 \quad B_{t+1}-B_{t}=-0.2 B_{t}\)
- \(B_{0}=1,000 \quad B_{t+1}-B_{t}=1.2 B_{t}\)
- \(B_{0}=1,000 \quad B_{t+1}-B_{t}=-0.1 B_{t}\)
- \(B_{0}=1,000 \quad B_{t+1}-B_{t}=0.9 B_{t}\)
Exercise 1.2.2 The equation, \(B_{t} − B_{t−1} = r B_{t−1}\), carries the same information as \(B_{t+1} − B_{t} = r B_{t}\).
- Write the first four instances of \(B_{t}-B_{t-1}=r B_{t-1}\) using \(t=1, t=2, t=3,\) and \(t=4\).
- Cascade these four equations to get an expression for \(B_{4}\) in terms of \(r\) and \(B_{0}\).
- Write solutions to and compute \(B_{40}\) for
- \(B_{0}=50 \quad B_{t}-B_{t-1}=0.2 B_{t-1}\)
- \(B_{0}=50 \quad B_{t}-B_{t-1}=0.1 B_{t-1}\)
- \(B_{0}=50 \quad B_{t}-B_{t-1}=0.05 B_{t-1}\)
- \(B_{0}=50 \quad B_{t}-B_{t-1}=-0.1 B_{t-1}\)
Exercise 1.2.3 Suppose a population is initially of size 1,000,000 and grows at the rate of 2% per year. What will be the size of the population after 50 years?
Exercise 1.2.4 The polymerase chain reaction is a means of making multiple copies of a DNA segment from only a minute amounts of original DNA. The procedure consists of a sequence of, say, 30 cycles in which each segment present at the beginning of a cycle is duplicated once; at the end of the cycle that segment and one copy is present. Introduce notation and write a difference equation with initial condition from which the amount of DNA present at the end of each cycle can be computed. Suppose you begin with 1 picogram = 0.000000000001 g of DNA. How many grams of DNA would be present after 30 cycles.
Exercise 1.2.5 Write a solution to the dynamic equation you obtained for growth of V. natriegens in growth medium of pH 7.85 in Exercise 1.1.5. Use your solution to compute your estimate of \(B_{4}\).
Exercise 1.2.6 There is a suggestion that the world human population is growing exponentially. Shown below are the human population numbers in billions of people for the decades 1940 - 2010.
Year | 1940 | 1950 | 1960 | 1970 | 1980 | 1990 | 2000 | 2010 |
---|---|---|---|---|---|---|---|---|
Index, t | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Human Population \(\times 10^6\) | 2.30 | 2.52 | 3.02 | 3.70 | 4.45 | 5.30 | 6.06 | 6.80 |
- Test the equation \[P_{t}=2.2 (1 .19)^{t}\] against the data where \(t\) is the time index in decades after 1940 and \(P_t\) is the human population in billions.
- What percentage increase in human population each decade does the model for the equation assume?
- What world human population does the equation predict for the year 2050?