3.7: Left and right limits and derivatives; limits involving infinity.
- Page ID
- 93321
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Suppose \(F\) is a function defined for all \(x\). We give meaning to the following symbols.
\[\lim _{x \rightarrow a^{-}} F(x) \quad \text { and } \quad F^{-}(a) \text {. }\]
Having done so, we ask you to define
\[\lim _{x \rightarrow a^{+}} F(x) \quad \text { and } \quad F^{+}(a) \text {. }\]
Next we will define limits involving infinity,
\[\lim _{x \rightarrow \infty} F(x) \quad \text { and } \quad \lim _{x \rightarrow a^{-}} F(x) = \infty \text {, }\]
and ask you to define
\[\lim _{x \rightarrow - \infty} F(x) \quad \text { and } \quad \lim _{x \rightarrow a^{+}} F(x) = \infty \text {, }\]
In reading the following two definitions, it will be helpful to study the graphs in Figure 3.7.1 and assume \(a = 3\).
Figure \(\PageIndex{1}\): Graphs of functions \(F, G\), and \(H\) that illustrate Definitions 3.7.1 and 3.7.2.
Definition 3.7.1 Left hand limit and derivative
Suppose \(F\) is a function defined for all numbers \(x\) except perhaps for a number \(a\) and \(L\) is a number.
\[\text { The statement that } \lim _{x \rightarrow a^{-}} F(x)=L \quad \text { means that }\]
if \(\epsilon\) is a positive number there is a positive number \(\delta\) such that if \(x\) is in the domain of \(F\) and \(a − \delta < x < a\), then \(|F(x) − L| < \epsilon\).
If \(F\) is defined at \(a\), then \(F ^{\prime -} (a)\) is defined by
\[F^{\prime-}(a)=\lim _{x \rightarrow a^{-}} \frac{F(x)-F(a)}{x-a} \label{3.37}\]
For convenience, in the definitions we have assumed that \(F\) is defined for all numbers except perhaps \(a\); in Definition 3.7.1, for example, it would be sufficient to assume that for every number \(b\) less than \(a\), the domain of \(F\) contains a number between \(b\) and \(a\). The condition \(a − \delta < x < a\) restricts \(x\) to being 'to the left' of \(a ~ (x < a)\) and within \(\delta\) of \(a\). In Figure 3.7.1A, \(\lim _{x \rightarrow 3^{-}} F(x) = 1\). In Figure 3.7.1C, \(H ^{\prime -} (3) = -1/3\). This may help resolve some dispute as to whether \(H\) has a tangent at (3,2) that was mentioned early in this chapter, Explore 3.1.2.
Definition 3.7.2 Limits involving infinity
Suppose \(F\) is a function defined for all numbers \(x\) except perhaps for a number \(a\) and \(L\) is a number.
\[\text{The statement that} \quad \lim _{x \rightarrow \infty} F(x)=L \quad \text{means that}\]
if \(\epsilon\) is a positive number there is a number \(M\) so that if \(x > M, |F(x)-L| < \epsilon\).
The half-line \(y = L\) for \(x > 0\) is said to be a horizontal asymptote of \(F\).
\[\text{The statement that} \quad \lim _{x \rightarrow a} F(x)= \infty \quad \text{means that}\]
if \(M\) is a number there is a positive number \(\delta\) so that if \(0 < |a − x| < \delta, F(x) > M\).
In Figure 3.7.1B, \(\lim _{x \rightarrow \infty} G(x)= 2\), and \(\lim _{x \rightarrow 3} G(x)\) does not exist. However, \(\lim _{x \rightarrow 3^{-}} G(x) = \infty\)
Explore 3.7.1 Refer to Figure 3.7.1. For each part below, either evaluate the expression or explain why it is not defined.
- \(\lim _{x \rightarrow 3^{+}} F(x)\)
- \(\lim _{x \rightarrow 3} F(x)\)
- \(\lim _{x \rightarrow 3^{+}} G(x)\)
- \(F ^{\prime -} (3)\)
- \(H ^{\prime +} (3)\)
- \(H ^{\prime} (3)\)
- \(\lim _{x \rightarrow \infty} F(x)\)
- \(\lim _{x \rightarrow - \infty} F(x)\)
- \(\lim _{x \rightarrow - \infty} H(x)\)
Explore 3.7.2 Write definitions for:
- \(\lim _{x \rightarrow a^{+}} F(x) = L\)
- \(F ^{\prime +} (a)\)
- \(\lim _{x \rightarrow - \infty} F(x) = L\)
- \(\lim _{x \rightarrow a^{+}} F(x) = - \infty\)
Explore 3.7.3 Attention: Solving this problem may require a significant amount of thought.
We say that \(\lim _{x \rightarrow a^{-}} F(x)\) exists if either
\[\lim _{x \rightarrow a^{-}} F(x)=-\infty, \quad \lim _{x \rightarrow a^{-}} F(x)=\infty, \quad \text { or for some number } L \quad \lim _{x \rightarrow a^{-}} F(x)=L\]
Is there a function, \(F\), defined for all numbers \(x\) such that
\[\lim _{x \rightarrow 1^{-}} F(x) \quad \text{does } \textbf{not} \text{ exist}.\]
Proof of the following theorem is only technical and is omitted.
Theorem 3.7.1 Suppose \((p, q)\) an open interval containing a number \(a\) and \(F\) is a function defined on \((p, q)\) excepts perhaps at \(a\) and \(L\) is a number.
\[\lim _{x \rightarrow a} F(x)=L \quad \text { if and only if both } \quad \lim _{x \rightarrow a^{-}} F(x)=L \quad \text { and } \quad \lim _{x \rightarrow a^{+}} F(x)=L \text {. } \label{3.38}\]
Furthermore, if \(F\) is defined at \(a\)
\[F^{\prime}(a) \quad \text { exists if and only if } \quad F^{\prime-}(a)=F^{\prime+}(a), \quad \text { in which case } \quad F^{\prime}(a)=F^{\prime-}(a) \text {. } \label{3.39}\]
Exercises for Section 3.7 Left and right limits and derivatives; limits involving infinity.
Exercise 3.7.1 For each of the graphs in Figure 3.7.1 of a function, \(F\), answer the questions or assert that there is no answer available.
- What does \(F(t)\) approach as t approaches 3?
- What does \(F(t)\) approach as t approaches \(3^{-}\)?
- What does \(F(t)\) approach as t approaches \(3^{+}\)?
- What is \(F(3)\)?
- Use the limit symbol to express answers to a. - c.
Figure for Exercise 3.7.1 Graphs of three functions for Exercise 3.7.1.
Exercise 3.7.2 Let functions \(D, E, F, G\), and \(H\) be defined by
\[\begin{aligned}
&D(x)=|x| \quad \text { for all } x \\
&E(x)=\left\{\begin{array}{rll}
-1 & \text { for } & x<0 \\
0 & \text { for } & x=0 \\
1 & \text { for } & 0<x
\end{array}\right. \\
&F(x)=\left\{\begin{array}{r}
x^{2} \text { for } x<0 \\
\sqrt{x} \text { for } x \geq 0
\end{array}\right. \\
&G(x)=\left\{\begin{array}{rll}
1 & \text { for } & x \neq 0 \\
2 & \text { for } & x=0
\end{array}\right. \\
&H(x)=\left\{\begin{array}{r}
x \text { for } x<0 \\
x^{2} \text { for } x \geq 0
\end{array}\right.
\end{aligned}\]
- Sketch the graphs of \(D, E, F, G\), and \(H\).
- Let \(K\) be either of \(D, E, F, G\), or \(H\). Evaluate the limits or show that they do not exist.
- \(\lim _{x \rightarrow 0^{-}} K(x)\)
- \(\lim _{x \rightarrow 0^{+}} K(x)\)
- \(\lim _{x \rightarrow 0} K(x)\)
- \(K ^{\prime -} (0)\)
- \(K ^{\prime +} (0)\)
- \(K ^{\prime} (0)\)
Exercise 3.7.3 Define the term 'tangent from the left'. (We assume you would have a similar definition for 'tangent from the right'; no need to write it.) What is the relation between tangent from the left, tangent from the right, and tangent?