Skip to main content
Mathematics LibreTexts

7.5: The Other Trigonometric Functions

  • Page ID
    115093
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives

    In this section you will:

    • Find exact values of the trigonometric functions secant, cosecant, tangent, and cotangent of π3,π4,π3,π4, and π6.π6.
    • Use reference angles to evaluate the trigonometric functions secant, tangent, and cotangent.
    • Use properties of even and odd trigonometric functions.
    • Recognize and use fundamental identities.
    • Evaluate trigonometric functions with a calculator.

    A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the ground whose tangent is 112112 or less, regardless of its length. A tangent represents a ratio, so this means that for every 1 inch of rise, the ramp must have 12 inches of run. Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of six trigonometric functions. In this section, we will investigate the remaining functions.

    Finding Exact Values of the Trigonometric Functions Secant, Cosecant, Tangent, and Cotangent

    We can also define the remaining functions in terms of the unit circle with a point (x,y)(x,y) corresponding to an angle of t,t, as shown in Figure 1. As with the sine and cosine, we can use the (x,y)(x,y) coordinates to find the other functions.

    This image is a graph of circle with angle of t inscribed and a radius of 1. Point of (x, y) is at intersection of terminal side of angle and edge of circle.

    Figure 1

    The first function we will define is the tangent. The tangent of an angle is the ratio of the y-value to the x-value of the corresponding point on the unit circle. In Figure 1, the tangent of angle tt is equal to yx,x≠0.yx,x≠0. Because the y-value is equal to the sine of t,t, and the x-value is equal to the cosine of t,t, the tangent of angle tt can also be defined as sintcost,cost≠0.sintcost,cost≠0. The tangent function is abbreviated as tan.tan. The remaining three functions can all be expressed as reciprocals of functions we have already defined.

    • The secant function is the reciprocal of the cosine function. In Figure 1, the secant of angle tt is equal to 1cost=1x,x≠0.1cost=1x,x≠0. The secant function is abbreviated as sec.sec.
    • The cotangent function is the reciprocal of the tangent function. In Figure 1, the cotangent of angle tt is equal to costsint=xy,y≠0.costsint=xy,y≠0. The cotangent function is abbreviated as cot.cot.
    • The cosecant function is the reciprocal of the sine function. In Figure 1, the cosecant of angle tt is equal to 1sint=1y,y≠0.1sint=1y,y≠0. The cosecant function is abbreviated as csc.csc.
    TANGENT, SECANT, COSECANT, AND COTANGENT FUNCTIONS

    If tt is a real number and (x,y)(x,y) is a point where the terminal side of an angle of tt radians intercepts the unit circle, then

    tan tsec tcsc tcot t====yx,x≠01x,x≠01y,y≠0xy,y≠0tan t=yx,x≠0sec t=1x,x≠0csc t=1y,y≠0cot t=xy,y≠0

    EXAMPLE 1

    Finding Trigonometric Functions from a Point on the Unit Circle

    The point (−3√2,12)(−32,12) is on the unit circle, as shown in Figure 2. Find sint,cost,tant,sect,csct,sint,cost,tant,sect,csct, and cott.cott.

    This is an image of a graph of circle with angle of t inscribed and with radius 1. Point of (negative square root of 3 over 2, 1/2) is at intersection of terminal side of angle and edge of circle.

    Figure 2

    Answer

     

    TRY IT #1

    The point (2√2,−2√2)(22,−22) is on the unit circle, as shown in Figure 3. Find sint,cost,tant,sect,csct,sint,cost,tant,sect,csct, and cott.cott.

    This is an image of a graph of circle with angle of t inscribed with radius 1. Point of (square root of 2 over 2, negative square root of 2 over 2) is at intersection of terminal side of angle and edge of circle.

    Figure 3

    EXAMPLE 2

    Finding the Trigonometric Functions of an Angle

    Find sint,cost,tant,sect,csct,sint,cost,tant,sect,csct, and cott.cott. when t=π6.t=π6.

    Answer

     

    TRY IT #2

    Find sint,cost,tant,sect,csct,sint,cost,tant,sect,csct, and cott.cott. when t=π3.t=π3.

    Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function values for those angles as well by setting xx equal to the cosine and yy equal to the sine and then using the definitions of tangent, secant, cosecant, and cotangent. The results are shown in Table 1.

    Angle 00 π6,or 30°π6,or 30° π4,or 45°π4,or 45° π3,or 60°π3,or 60° π2,or 90°π2,or 90°
    Cosine 1 3√232 2√222 1212 0
    Sine 0 1212 2√222 3√232 1
    Tangent 0 3√333 1 3–√3 Undefined
    Secant 1 23√3233 2–√2 2 Undefined
    Cosecant Undefined 2 2–√2 23√3233 1
    Cotangent Undefined 3–√3 1 3√333 0

    Table 1

    Using Reference Angles to Evaluate Tangent, Secant, Cosecant, and Cotangent

    We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already done with the sine and cosine functions. The procedure is the same: Find the reference angle formed by the terminal side of the given angle with the horizontal axis. The trigonometric function values for the original angle will be the same as those for the reference angle, except for the positive or negative sign, which is determined by x- and y-values in the original quadrant. Figure 4 shows which functions are positive in which quadrant.

    To help remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic phrase “A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four quadrants, starting with quadrant I and rotating counterclockwise. In quadrant I, which is “A,” all of the six trigonometric functions are positive. In quadrant II, “Smart,” only sine and its reciprocal function, cosecant, are positive. In quadrant III, “Trig,” only tangent and its reciprocal function, cotangent, are positive. Finally, in quadrant IV, “Class,” only cosine and its reciprocal function, secant, are positive.

    This image is a graph of circle with each quadrant labeled. Under quadrant I, labels for sin t, cos t, tan t, sec t, csc t, and cot t. Under quadrant II, labels for sin t and csc t. Under quadrant III, labels for tan t and cot t. Under quadrant IV, labels for cos t, sec t.

    Figure 4 The trigonometric functions are each listed in the quadrants in which they are positive.

    HOW TO

    Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

    1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the reference angle.
    2. Evaluate the function at the reference angle.
    3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant, determine whether the output is positive or negative.

    EXAMPLE 3

    Using Reference Angles to Find Trigonometric Functions

    Use reference angles to find all six trigonometric functions of −5π6.−5π6.

    Answer

     

    TRY IT #3

    Use reference angles to find all six trigonometric functions of −7π4.−7π4.

    Using Even and Odd Trigonometric Functions

    To be able to use our six trigonometric functions freely with both positive and negative angle inputs, we should examine how each function treats a negative input. As it turns out, there is an important difference among the functions in this regard.

    Consider the function f(x)=x2,f(x)=x2, shown in Figure 5. The graph of the function is symmetrical about the y-axis. All along the curve, any two points with opposite x-values have the same function value. This matches the result of calculation: (4)2=(−4)2,(−5)2=(5)2,(4)2=(−4)2,(−5)2=(5)2, and so on. So f(x)=x2f(x)=x2 is an even function, a function such that two inputs that are opposites have the same output. That means f(−x)=f(x).f(−x)=f(x).

    This is an image of a graph of and upward facing parabola with points (-2, 4) and (2, 4) labeled.

    Figure 5 The function f(x)=x2f(x)=x2 is an even function.

    Now consider the function f(x)=x3,f(x)=x3, shown in Figure 6. The graph is not symmetrical about the y-axis. All along the graph, any two points with opposite x-values also have opposite y-values. So f(x)=x3f(x)=x3 is an odd function, one such that two inputs that are opposites have outputs that are also opposites. That means f(−x)=−f(x).f(−x)=−f(x).

    This is an image of a graph of the function f of x = x to the third power with labels for points (-1, -1) and (1, 1).

    Figure 6 The function f(x)=x3f(x)=x3 is an odd function.

    We can test whether a trigonometric function is even or odd by drawing a unit circle with a positive and a negative angle, as in Figure 7. The sine of the positive angle is y.y. The sine of the negative angle is −y.−y. The sine function, then, is an odd function. We can test each of the six trigonometric functions in this fashion. The results are shown in Table 2.

    Graph of circle with angle of t and -t inscribed. Point of (x, y) is at intersection of terminal side of angle t and edge of circle. Point of (x, -y) is at intersection of terminal side of angle -t and edge of circle.

    Figure 7

    sin tsin(−t)sin t==≠y−ysin(−t)sin t=ysin(−t)=−ysin t≠sin(−t)

    cos tcos(−t)cos t===xxcos(−t)cos t=xcos(−t)=xcos t=cos(−t)

    tan(t)tan(−t)tan t==≠yx−yxtan(−t)tan(t)=yxtan(−t)=−yxtan t≠tan(−t)

    sec tsec(−t)sec t===1x1xsec(−t)sec t=1xsec(−t)=1xsec t=sec(−t)

    csc tcsc(−t)csc t==≠1y1−ycsc(−t)csc t=1ycsc(−t)=1−ycsc t≠csc(−t)

    cot tcot(−t)cot t==≠xyx−ycot(−t)cot t=xycot(−t)=x−ycot t≠cot(−t)

    Table 2

    EVEN AND ODD TRIGONOMETRIC FUNCTIONS

    An even function is one in which f(−x)=f(x).f(−x)=f(x).

    An odd function is one in which f(−x)=−f(x).f(−x)=−f(x).

    Cosine and secant are even:

    cos(−t)sec(−t)==cos tsec tcos(−t)=cos tsec(−t)=sec t

    Sine, tangent, cosecant, and cotangent are odd:

    sin(−t)tan(−t)csc(−t)cot(−t)====−sin t−tan t−csc t−cot tsin(−t)=−sin ttan(−t)=−tan tcsc(−t)=−csc tcot(−t)=−cot t

    EXAMPLE 4

    Using Even and Odd Properties of Trigonometric Functions

    If the secant of angle tt is 2, what is the secant of −t?−t?

    Answer

     

    TRY IT #4

    If the cotangent of angle tt is 3–√,3, what is the cotangent of −t?−t?

    Recognizing and Using Fundamental Identities

    We have explored a number of properties of trigonometric functions. Now, we can take the relationships a step further, and derive some fundamental identities. Identities are statements that are true for all values of the input on which they are defined. Usually, identities can be derived from definitions and relationships we already know. For example, the Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and the definitions of sine and cosine.

    FUNDAMENTAL IDENTITIES

    We can derive some useful identities from the six trigonometric functions. The other four trigonometric functions can be related back to the sine and cosine functions using these basic relationships:

    tant=sintcosttant=sintcost

    sect=1costsect=1cost

    csct=1sintcsct=1sint

    cott=1tant=costsintcott=1tant=costsint

    EXAMPLE 5

    Using Identities to Evaluate Trigonometric Functions

    1. ⓐ Given sin(45°)=2√2,cos(45°)=2√2,sin(45°)=22,cos(45°)=22, evaluate tan(45°).tan(45°).
    2. ⓑ Given sin(5π6)=12,cos(5π6)=−3√2,sin(5π6)=12,cos(5π6)=−32, evaluate sec(5π6).sec(5π6).
    Answer

     

    1.  
    2.  
    TRY IT #5

    Evaluate csc(7π6).csc(7π6).

    EXAMPLE 6

    Using Identities to Simplify Trigonometric Expressions

    Simplify secttant.secttant.

    Answer

     

    TRY IT #6

    Simplify (tant)(cost).(tant)(cost).

    Alternate Forms of the Pythagorean Identity

    We can use these fundamental identities to derive alternate forms of the Pythagorean Identity, cos2t+sin2t=1.cos2t+sin2t=1. One form is obtained by dividing both sides by cos2t.cos2t.

    cos2tcos2t+sin2tcos2t1+tan2t==1cos2tsec2tcos2tcos2t+sin2tcos2t=1cos2t1+tan2t=sec2t

    The other form is obtained by dividing both sides by sin2t.sin2t.

    cos2tsin2t+sin2tsin2tcot2t+1==1sin2tcsc2tcos2tsin2t+sin2tsin2t=1sin2tcot2t+1=csc2t

    ALTERNATE FORMS OF THE PYTHAGOREAN IDENTITY

    1+tan2t=sec2t1+tan2t=sec2t

    cot2t+1=csc2tcot2t+1=csc2t

    EXAMPLE 7

    Using Identities to Relate Trigonometric Functions

    If cos(t)=1213cos(t)=1213 and tt is in quadrant IV, as shown in Figure 8, find the values of the other five trigonometric functions.

    This is an image of graph of circle with angle of t inscribed. Point of (12/13, y) is at intersection of terminal side of angle and edge of circle.

    Figure 8

    Answer

     

    TRY IT #7

    If sec(t)=−178sec(t)=−178 and 0<t<π,0<t<π, find the values of the other five functions.

    As we discussed at the beginning of the chapter, a function that repeats its values in regular intervals is known as a periodic function. The trigonometric functions are periodic. For the four trigonometric functions, sine, cosine, cosecant and secant, a revolution of one circle, or 2π,2π, will result in the same outputs for these functions. And for tangent and cotangent, only a half a revolution will result in the same outputs.

    Other functions can also be periodic. For example, the lengths of months repeat every four years. If xx represents the length time, measured in years, and f(x)f(x) represents the number of days in February, then f(x+4)=f(x).f(x+4)=f(x). This pattern repeats over and over through time. In other words, every four years, February is guaranteed to have the same number of days as it did 4 years earlier. The positive number 4 is the smallest positive number that satisfies this condition and is called the period. A period is the shortest interval over which a function completes one full cycle—in this example, the period is 4 and represents the time it takes for us to be certain February has the same number of days.

    PERIOD OF A FUNCTION

    The period PP of a repeating function ff is the number representing the interval such that f(x+P)=f(x)f(x+P)=f(x) for any value of x.x.

    The period of the cosine, sine, secant, and cosecant functions is 2π.2π.

    The period of the tangent and cotangent functions is π.π.

    EXAMPLE 8

    Finding the Values of Trigonometric Functions

    Find the values of the six trigonometric functions of angle tt based on Figure 9.

    This is an image of a graph of circle with angle of t inscribed. Point of (1/2, negative square root of 3 over 2) is at intersection of terminal side of angle and edge of circle.

    Figure 9

    Answer

     

    TRY IT #8

    Find the values of the six trigonometric functions of angle tt based on Figure 10.

    This is an image of a graph of circle with angle of t inscribed. Point of (0, -1) is at intersection of terminal side of angle and edge of circle.

    Figure 10

    EXAMPLE 9

    Finding the Value of Trigonometric Functions

    If sin(t)=−3√2andcos(t)=12,findsec(t),csc(t),tan(t),cot(t).sin(t)=−32andcos(t)=12,findsec(t),csc(t),tan(t),cot(t).

    Answer

     

    TRY IT #9

    sin(t)=2√2andcos(t)=2√2,findsec(t),csc(t),tan(t),andcot(t)sin(t)=22andcos(t)=22,findsec(t),csc(t),tan(t),andcot(t)

    Evaluating Trigonometric Functions with a Calculator

    We have learned how to evaluate the six trigonometric functions for the common first-quadrant angles and to use them as reference angles for angles in other quadrants. To evaluate trigonometric functions of other angles, we use a scientific or graphing calculator or computer software. If the calculator has a degree mode and a radian mode, confirm the correct mode is chosen before making a calculation.

    Evaluating a tangent function with a scientific calculator as opposed to a graphing calculator or computer algebra system is like evaluating a sine or cosine: Enter the value and press the TAN key. For the reciprocal functions, there may not be any dedicated keys that say CSC, SEC, or COT. In that case, the function must be evaluated as the reciprocal of a sine, cosine, or tangent.

    If we need to work with degrees and our calculator or software does not have a degree mode, we can enter the degrees multiplied by the conversion factor π180π180 to convert the degrees to radians. To find the secant of 30°,30°, we could press

    (for a scientific calculator):130×π180COSor(for a graphing calculator):1cos(30π180)(for a scientific calculator):130×π180COSor(for a graphing calculator):1cos(30π180)

    HOW TO

    Given an angle measure in radians, use a scientific calculator to find the cosecant.

    1. If the calculator has degree mode and radian mode, set it to radian mode.
    2. Enter: 1/1/
    3. Enter the value of the angle inside parentheses.
    4. Press the SIN key.
    5. Press the = key.
    HOW TO

    Given an angle measure in radians, use a graphing utility/calculator to find the cosecant.

    • If the graphing utility has degree mode and radian mode, set it to radian mode.
    • Enter: 1/1/
    • Press the SIN key.
    • Enter the value of the angle inside parentheses.
    • Press the ENTER key.

    EXAMPLE 10

    Evaluating the Cosecant Using Technology

    Evaluate the cosecant of 5π7.5π7.

    Answer

     

    TRY IT #10

    Evaluate the cotangent of −π8.−π8.

    MEDIA

    Access these online resources for additional instruction and practice with other trigonometric functions.

    7.4 Section Exercises

    Verbal

    1

    On an interval of [0,2π),[ 0,2π ), can the sine and cosine values of a radian measure ever be equal? If so, where?

    2. 

    What would you estimate the cosine of ππ degrees to be? Explain your reasoning.

    3

    For any angle in quadrant II, if you knew the sine of the angle, how could you determine the cosine of the angle?

    4. 

    Describe the secant function.

    5

    Tangent and cotangent have a period of π.π. What does this tell us about the output of these functions?

    Algebraic

    For the following exercises, find the exact value of each expression.

    6. 

    tanπ6tanπ6

    7

    secπ6secπ6

    8. 

    cscπ6cscπ6

    9

    cotπ6cotπ6

    10. 

    tanπ4tanπ4

    11

    secπ4secπ4

    12. 

    cscπ4cscπ4

    13

    cotπ4cotπ4

    14. 

    tanπ3tanπ3

    15

    secπ3secπ3

    16. 

    cscπ3cscπ3

    17

    cotπ3cotπ3

    For the following exercises, use reference angles to evaluate the expression.

    18. 

    tan5π6tan5π6

    19

    sec7π6sec7π6

    20. 

    csc11π6csc11π6

    21

    cot13π6cot13π6

    22. 

    tan7π4tan7π4

    23

    sec3π4sec3π4

    24. 

    csc5π4csc5π4

    25

    cot11π4cot11π4

    26. 

    tan8π3tan8π3

    27

    sec4π3sec4π3

    28. 

    csc2π3csc2π3

    29

    cot5π3cot5π3

    30. 

    tan225°tan225°

    31

    sec300°sec300°

    32. 

    csc150°csc150°

    33

    cot240°cot240°

    34. 

    tan330°tan330°

    35

    sec120°sec120°

    36. 

    csc210°csc210°

    37

    cot315°cot315°

    38. 

    If sint=34,sint=34, and tt is in quadrant II, find cost,sect,csct,tant,cost,sect,csct,tant, and cott.cott.

    39

    If cost=−13,cost=−13, and tt is in quadrant III, find sint,sect,csct,tant,sint,sect,csct,tant, and cott.cott.

    40. 

    If tant=125tant=125, and 0≤t<π20≤t<π2, find sint,cost,sect,csct,andcott.sint,cost,sect,csct,andcott.

    41

    If sint=3√2sint=32 and cost=12,cost=12, find sect,csct,tant,sect,csct,tant, and cott.cott.

    42. 

    If sin40°≈0.643sin40°≈0.643 and cos40°≈0.766,cos40°≈0.766, find sec40°,csc40°,tan40°,sec40°,csc40°,tan40°, and cot40°.cot40°.

    43

    If sint=2√2,sint=22, what is the sin(−t)?sin(−t)?

    44. 

    If cost=12,cost=12, what is the cos(−t)?cos(−t)?

    45

    If sect=3.1,sect=3.1, what is the sec(−t)?sec(−t)?

    46. 

    If csct=0.34,csct=0.34, what is the csc(−t)?csc(−t)?

    47

    If tant=−1.4,tant=−1.4, what is the tan(−t)?tan(−t)?

    48. 

    If cott=9.23,cott=9.23, what is the cot(−t)?cot(−t)?

    Graphical

    For the following exercises, use the angle in the unit circle to find the value of the each of the six trigonometric functions.

    49.

    This is an image of a graph of circle with angle of t inscribed. Point of (square root of 2 over 2, square root of 2 over 2) is at intersection of terminal side of angle and edge of circle.

    50.

    This is an image of a graph of circle with angle of t inscribed. Point of (square root of 3 over 2, 1/2) is at intersection of terminal side of angle and edge of circle.

    51.

    This is an image of a graph of circle with angle of t inscribed. Point of (-1/2, negative square root of 3 over 2) is at intersection of terminal side of angle and edge of circle.

    Technology

    For the following exercises, use a graphing calculator to evaluate to three decimal places.

    52. 

    csc5π9csc5π9

    53

    cot4π7cot4π7

    54. 

    secπ10secπ10

    55

    tan5π8tan5π8

    56. 

    sec3π4sec3π4

    57

    cscπ4cscπ4

    58. 

    tan98°tan98°

    59

    cot33°cot33°

    60. 

    cot140°cot140°

    61

    sec310°sec310°

    Extensions

    For the following exercises, use identities to evaluate the expression.

    62. 

    If tan(t)≈2.7,tan(t)≈2.7, and sin(t)≈0.94,sin(t)≈0.94, find cos(t).cos(t).

    63

    If tan(t)≈1.3,tan(t)≈1.3, and cos(t)≈0.61,cos(t)≈0.61, find sin(t).sin(t).

    64. 

    If csc(t)≈3.2,csc(t)≈3.2, and cos(t)≈0.95,cos(t)≈0.95, find tan(t).tan(t).

    65

    If cot(t)≈0.58,cot(t)≈0.58, and cos(t)≈0.5,cos(t)≈0.5, find csc(t).csc(t).

    66. 

    Determine whether the function f(x)=2sinxcosxf(x)=2sinxcosx is even, odd, or neither.

    67

    Determine whether the function f(x)=3sin2xcosx+secxf(x)=3sin2xcosx+secx is even, odd, or neither.

    68. 

    Determine whether the function f(x)=sinx−2cos2xf(x)=sinx−2cos2x is even, odd, or neither.

    69

    Determine whether the function f(x)=csc2x+secxf(x)=csc2x+secx is even, odd, or neither.

    For the following exercises, use identities to simplify the expression.

    70. 

    cscttantcscttant

    71

    sectcsctsectcsct

    Real-World Applications

    72. 

    The amount of sunlight in a certain city can be modeled by the function h=15cos(1600d),h=15cos(1600d), where hh represents the hours of sunlight, and dd is the day of the year. Use the equation to find how many hours of sunlight there are on February 11, the 42nd day of the year. State the period of the function.

    73

    The amount of sunlight in a certain city can be modeled by the function h=16cos(1500d),h=16cos(1500d), where hh represents the hours of sunlight, and dd is the day of the year. Use the equation to find how many hours of sunlight there are on September 24, the 267th day of the year. State the period of the function.

    74. 

    The equation P=20sin(2πt)+100P=20sin(2πt)+100 models the blood pressure, P,P, where tt represents time in seconds. (a) Find the blood pressure after 15 seconds. (b) What are the maximum and minimum blood pressures?

    75

    The height of a piston, h,h, in inches, can be modeled by the equation y=3sinx+1,y=3sinx+1, where xx represents the crank angle. Find the height of the piston when the crank angle is 55°.55°.

    76. 

    The height of a piston, h,h, in inches, can be modeled by the equation y=2cosx+5,y=2cosx+5, where xx represents the crank angle. Find the height of the piston when the crank angle is 55°.


    This page titled 7.5: The Other Trigonometric Functions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.