Skip to main content
Mathematics LibreTexts

14.2.12: Chapter 12

  • Page ID
    118266
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Try It

    12.1 The Ellipse

    1.

    x 2 + y 2 16 =1 x 2 + y 2 16 =1

    2.

    ( x1 ) 2 16 + ( y3 ) 2 4 =1 ( x1 ) 2 16 + ( y3 ) 2 4 =1

    3.

    center: ( 0,0 ); ( 0,0 ); vertices: ( ±6,0 ); ( ±6,0 ); co-vertices: ( 0,±2 ); ( 0,±2 ); foci: ( ±4 2 ,0 ) ( ±4 2 ,0 )

    b2ec109544091d745a7ae836c7cf35db54011ee3
    4.

    Standard form: x 2 16 + y 2 49 =1; x 2 16 + y 2 49 =1; center: ( 0,0 ); ( 0,0 ); vertices: ( 0,±7 ); ( 0,±7 ); co-vertices: ( ±4,0 ); ( ±4,0 ); foci: ( 0,± 33 ) ( 0,± 33 )

    0e737b089bdd8054841a8294d67ccfdeeff6f2eb
    5.

    Center: ( 4,2 ); ( 4,2 ); vertices: ( 2,2 ) ( 2,2 ) and ( 10,2 ); ( 10,2 ); co-vertices: ( 4,22 5 ) ( 4,22 5 ) and ( 4,2+2 5 ); ( 4,2+2 5 ); foci: ( 0,2 ) ( 0,2 ) and ( 8,2 ) ( 8,2 )

    fd84b64f7b9f310503d634df0bc5b7146a0a49a7
    6.

    (x3) 2 4 + ( y+1 ) 2 16 =1; (x3) 2 4 + ( y+1 ) 2 16 =1; center: ( 3,1 ); ( 3,1 ); vertices: ( 3,5 ) ( 3,5 ) and ( 3,3 ); ( 3,3 ); co-vertices: ( 1,1 ) ( 1,1 ) and ( 5,1 ); ( 5,1 ); foci: ( 3,12 3 ) ( 3,12 3 ) and ( 3,1+2 3 ) ( 3,1+2 3 )

    7.
    1. x 2 57,600 + y 2 25,600 =1 x 2 57,600 + y 2 25,600 =1
    2. The people are standing 358 feet apart.

    12.2 The Hyperbola

    1.

    Vertices: ( ±3,0 ); ( ±3,0 ); Foci: ( ± 34 ,0 ) ( ± 34 ,0 )

    2.

    y 2 4 x 2 16 =1 y 2 4 x 2 16 =1

    3.

    ( y3 ) 2 25 + ( x1 ) 2 144 =1 ( y3 ) 2 25 + ( x1 ) 2 144 =1

    4.

    vertices: ( ±12,0 ); ( ±12,0 ); co-vertices: ( 0,±9 ); ( 0,±9 ); foci: ( ±15,0 ); ( ±15,0 ); asymptotes: y=± 3 4 x; y=± 3 4 x;

    c315d2b489a8535d6b6bd7810ded932996bf11f3
    5.

    center: ( 3,4 ); ( 3,4 ); vertices: ( 3,14 ) ( 3,14 ) and ( 3,6 ); ( 3,6 ); co-vertices: ( 5,4 ); ( 5,4 ); and ( 11,4 ); ( 11,4 ); foci: ( 3,42 41 ) ( 3,42 41 ) and ( 3,4+2 41 ); ( 3,4+2 41 ); asymptotes: y=± 5 4 ( x3 )4 y=± 5 4 ( x3 )4

    f55d78608dc0c90c104e6a49e2caa8a203d3ec03
    6.

    The sides of the tower can be modeled by the hyperbolic equation. x 2 400 y 2 3600 =1or  x 2 20 2 y 2 60 2 =1. x 2 400 y 2 3600 =1or  x 2 20 2 y 2 60 2 =1.

    12.3 The Parabola

    1.

    Focus: ( 4,0 ); ( 4,0 ); Directrix: x=4; x=4; Endpoints of the latus rectum: ( 4,±8 ) ( 4,±8 )

    c6a17af110ab120d3470f7d723226df16a135958
    2.

    Focus: ( 0,2 ); ( 0,2 ); Directrix: y=−2; y=−2; Endpoints of the latus rectum: ( ±4,2 ). ( ±4,2 ).

    fb2d5a2609085d48d5efff756bfcbb7212b7c80d
    3.

    x 2 =14y. x 2 =14y.

    4.

    Vertex: ( 8,1 ); ( 8,1 ); Axis of symmetry: y=−1; y=−1; Focus: ( 9,1 ); ( 9,1 ); Directrix: x=7; x=7; Endpoints of the latus rectum: ( 9,3 ) ( 9,3 ) and ( 9,1 ). ( 9,1 ).

    d0d0832a050bf9af39866fc8c3100d83390b3f05
    5.

    Vertex: ( 2,3 ); ( 2,3 ); Axis of symmetry: x=−2; x=−2; Focus: ( 2,2 ); ( 2,2 ); Directrix: y=8; y=8; Endpoints of the latus rectum: ( 12,2 ) ( 12,2 ) and ( 8,2 ). ( 8,2 ).

    7297ffaacad2091ab1448f047075519325daafef
    6.
    1. y 2 =1280x y 2 =1280x
    2. The depth of the cooker is 500 mm

    12.4 Rotation of Axes

    1.
    1. hyperbola
    2. ellipse
    2.

    x 2 4 + y 2 1 =1 x 2 4 + y 2 1 =1

    3.
    1. hyperbola
    2. ellipse

    12.5 Conic Sections in Polar Coordinates

    1.

    ellipse; e= 1 3 ;x=2 e= 1 3 ;x=2

    2.
    4a575f682c34a9d263f0c395a4e40f14f9a4b994
    3.

    r= 1 1cosθ r= 1 1cosθ

    4.

    48x+3 x 2 y 2 =0 48x+3 x 2 y 2 =0

    12.1 Section Exercises

    1.

    An ellipse is the set of all points in the plane the sum of whose distances from two fixed points, called the foci, is a constant.

    3.

    This special case would be a circle.

    5.

    It is symmetric about the x-axis, y-axis, and the origin.

    7.

    yes; x 2 3 2 + y 2 2 2 =1 x 2 3 2 + y 2 2 2 =1

    9.

    yes; x 2 ( 1 2 ) 2 + y 2 ( 1 3 ) 2 =1 x 2 ( 1 2 ) 2 + y 2 ( 1 3 ) 2 =1

    11.

    x 2 2 2 + y 2 7 2 =1; x 2 2 2 + y 2 7 2 =1; Endpoints of major axis ( 0,7 ) ( 0,7 ) and ( 0,7 ). ( 0,7 ). Endpoints of minor axis ( 2,0 ) ( 2,0 ) and ( 2,0 ). ( 2,0 ). Foci at ( 0,3 5 ),( 0,3 5 ). ( 0,3 5 ),( 0,3 5 ).

    13.

    x 2 ( 1 ) 2 + y 2 ( 1 3 ) 2 =1; x 2 ( 1 ) 2 + y 2 ( 1 3 ) 2 =1; Endpoints of major axis ( 1,0 ) ( 1,0 ) and ( 1,0 ). ( 1,0 ). Endpoints of minor axis ( 0, 1 3 ),( 0, 1 3 ). ( 0, 1 3 ),( 0, 1 3 ). Foci at ( 2 2 3 ,0 ),( 2 2 3 ,0 ). ( 2 2 3 ,0 ),( 2 2 3 ,0 ).

    15.

    ( x2 ) 2 7 2 + ( y4 ) 2 5 2 =1; ( x2 ) 2 7 2 + ( y4 ) 2 5 2 =1; Endpoints of major axis ( 9,4 ),( 5,4 ). ( 9,4 ),( 5,4 ). Endpoints of minor axis ( 2,9 ),( 2,1 ). ( 2,9 ),( 2,1 ). Foci at ( 2+2 6 ,4 ),( 22 6 ,4 ). ( 2+2 6 ,4 ),( 22 6 ,4 ).

    17.

    ( x+5 ) 2 2 2 + ( y7 ) 2 3 2 =1; ( x+5 ) 2 2 2 + ( y7 ) 2 3 2 =1; Endpoints of major axis ( 5,10 ),( 5,4 ). ( 5,10 ),( 5,4 ). Endpoints of minor axis ( 3,7 ),( 7,7 ). ( 3,7 ),( 7,7 ). Foci at ( 5,7+ 5 ),( 5,7 5 ). ( 5,7+ 5 ),( 5,7 5 ).

    19.

    ( x1 ) 2 3 2 + ( y4 ) 2 2 2 =1; ( x1 ) 2 3 2 + ( y4 ) 2 2 2 =1; Endpoints of major axis ( 4,4 ),( 2,4 ). ( 4,4 ),( 2,4 ). Endpoints of minor axis ( 1,6 ),( 1,2 ). ( 1,6 ),( 1,2 ). Foci at ( 1+ 5 ,4 ),( 1 5 ,4 ). ( 1+ 5 ,4 ),( 1 5 ,4 ).

    21.

    ( x3 ) 2 ( 3 2 ) 2 + ( y5 ) 2 ( 2 ) 2 =1; ( x3 ) 2 ( 3 2 ) 2 + ( y5 ) 2 ( 2 ) 2 =1; Endpoints of major axis ( 3+3 2 ,5 ),( 33 2 ,5 ). ( 3+3 2 ,5 ),( 33 2 ,5 ). Endpoints of minor axis ( 3,5+ 2 ),( 3,5 2 ). ( 3,5+ 2 ),( 3,5 2 ). Foci at ( 7,5 ),( 1,5 ). ( 7,5 ),( 1,5 ).

    23.

    ( x+5 ) 2 ( 5 ) 2 + ( y2 ) 2 ( 2 ) 2 =1; ( x+5 ) 2 ( 5 ) 2 + ( y2 ) 2 ( 2 ) 2 =1; Endpoints of major axis ( 0,2 ),( 10,2 ). ( 0,2 ),( 10,2 ). Endpoints of minor axis ( 5,4 ),( 5,0 ). ( 5,4 ),( 5,0 ). Foci at ( 5+ 21 ,2 ),( 5 21 ,2 ). ( 5+ 21 ,2 ),( 5 21 ,2 ).

    25.

    ( x+3 ) 2 ( 5 ) 2 + ( y+4 ) 2 ( 2 ) 2 =1; ( x+3 ) 2 ( 5 ) 2 + ( y+4 ) 2 ( 2 ) 2 =1; Endpoints of major axis ( 2,4 ),( 8,4 ). ( 2,4 ),( 8,4 ). Endpoints of minor axis ( 3,2 ),( 3,6 ). ( 3,2 ),( 3,6 ). Foci at ( 3+ 21 ,4 ),( 3 21 ,4 ). ( 3+ 21 ,4 ),( 3 21 ,4 ).

    27.

    Foci ( 3,1+ 11 ),( 3,1 11 ) ( 3,1+ 11 ),( 3,1 11 )

    29.

    Focus ( 0,0 ) ( 0,0 )

    31.

    Foci ( 10,30 ),( 10,30 ) ( 10,30 ),( 10,30 )

    33.

    Center ( 0,0 ), ( 0,0 ), Vertices ( 4,0 ),( 4,0 ),(0,3),(0,3), ( 4,0 ),( 4,0 ),(0,3),(0,3), Foci ( 7 ,0 ),( 7 ,0 ) ( 7 ,0 ),( 7 ,0 )

    a82343b66fbae11e1cdefa2af7807ae4b021935e
    35.

    Center ( 0,0 ), ( 0,0 ), Vertices ( 1 9 ,0 ),( 1 9 ,0 ),( 0, 1 7 ),( 0, 1 7 ), ( 1 9 ,0 ),( 1 9 ,0 ),( 0, 1 7 ),( 0, 1 7 ), Foci ( 0, 4 2 63 ),( 0, 4 2 63 ) ( 0, 4 2 63 ),( 0, 4 2 63 )

    462bcd587f176701310b6ef873fb2b68bab7f3c8
    37.

    Center ( 3,3 ), ( 3,3 ), Vertices ( 0,3 ),( 6,3 ),( 3,0 ),( 3,6 ), ( 0,3 ),( 6,3 ),( 3,0 ),( 3,6 ), Focus ( 3,3 ) ( 3,3 )

    Note that this ellipse is a circle. The circle has only one focus, which coincides with the center.

    ec26f05aeb9d624c260734b203b8f6e41499215b
    39.

    Center ( 1,1 ), ( 1,1 ), Vertices ( 5,1 ),( 3,1 ),( 1,3 ),( 1,1 ), ( 5,1 ),( 3,1 ),( 1,3 ),( 1,1 ), Foci ( 1,1+2 3 ),( 1,12 3 ) ( 1,1+2 3 ),( 1,12 3 )

    1556bf0a07d37a8ad3e504de3c28f86cada6e0ce
    41.

    Center ( 4,5 ), ( 4,5 ), Vertices ( 2,5 ),( 6,4 ),( 4,6 ),( 4,4 ), ( 2,5 ),( 6,4 ),( 4,6 ),( 4,4 ), Foci ( 4+ 3 ,5 ),( 4 3 ,5 ) ( 4+ 3 ,5 ),( 4 3 ,5 )

    30e9d0de308eff10347674e76d3046fc433b0b17
    43.

    Center ( 2,1 ), ( 2,1 ), Vertices ( 0,1 ),( 4,1 ),( 2,5 ),( 2,3 ), ( 0,1 ),( 4,1 ),( 2,5 ),( 2,3 ), Foci ( 2,1+2 3 ),( 2,12 3 ) ( 2,1+2 3 ),( 2,12 3 )

    f3d602734c8ddff2d3e0bc7dfac7c1161c3bbcde
    45.

    Center ( 2,2 ), ( 2,2 ), Vertices ( 0,2 ),( 4,2 ),( 2,0 ),( 2,4 ), ( 0,2 ),( 4,2 ),( 2,0 ),( 2,4 ), Focus ( 2,2 ) ( 2,2 )

    ca4ab27be15a293c54cddf3034f6372247046bb4
    47.

    x 2 25 + y 2 29 =1 x 2 25 + y 2 29 =1

    49.

    ( x4 ) 2 25 + ( y2 ) 2 1 =1 ( x4 ) 2 25 + ( y2 ) 2 1 =1

    51.

    ( x+3 ) 2 16 + ( y4 ) 2 4 =1 ( x+3 ) 2 16 + ( y4 ) 2 4 =1

    53.

    x 2 81 + y 2 9 =1 x 2 81 + y 2 9 =1

    55.

    ( x+2 ) 2 4 + ( y2 ) 2 9 =1 ( x+2 ) 2 4 + ( y2 ) 2 9 =1

    57.

    Area = 12πsquareunits Area = 12πsquareunits

    59.

    Area = 2 5 π Area = 2 5 π square units.

    61.

    Area = 9π Area = 9π square units.

    63.

    x 2 4 h 2 + y 2 1 4 h 2 =1 x 2 4 h 2 + y 2 1 4 h 2 =1

    65.

    x 2 400 + y 2 144 =1 x 2 400 + y 2 144 =1 . Distance = 17.32 feet

    67.

    Approximately 51.96 feet

    12.2 Section Exercises

    1.

    A hyperbola is the set of points in a plane the difference of whose distances from two fixed points (foci) is a positive constant.

    3.

    The foci must lie on the transverse axis and be in the interior of the hyperbola.

    5.

    The center must be the midpoint of the line segment joining the foci.

    7.

    yes x 2 6 2 y 2 3 2 =1 x 2 6 2 y 2 3 2 =1

    9.

    yes x 2 4 2 y 2 5 2 =1 x 2 4 2 y 2 5 2 =1

    11.

    x 2 5 2 y 2 6 2 =1; x 2 5 2 y 2 6 2 =1; vertices: ( 5,0 ),( 5,0 ); ( 5,0 ),( 5,0 ); foci: ( 61 ,0 ),( 61 ,0 ); ( 61 ,0 ),( 61 ,0 ); asymptotes: y= 6 5 x,y= 6 5 x y= 6 5 x,y= 6 5 x

    13.

    y 2 2 2 x 2 9 2 =1; y 2 2 2 x 2 9 2 =1; vertices: ( 0,2 ),( 0,2 ); ( 0,2 ),( 0,2 ); foci: ( 0, 85 ),( 0, 85 ); ( 0, 85 ),( 0, 85 ); asymptotes: y= 2 9 x,y= 2 9 x y= 2 9 x,y= 2 9 x

    15.

    ( x1 ) 2 3 2 ( y2 ) 2 4 2 =1; ( x1 ) 2 3 2 ( y2 ) 2 4 2 =1; vertices: ( 4,2 ),( 2,2 ); ( 4,2 ),( 2,2 ); foci: ( 6,2 ),( 4,2 ); ( 6,2 ),( 4,2 ); asymptotes: y= 4 3 ( x1 )+2,y= 4 3 ( x1 )+2 y= 4 3 ( x1 )+2,y= 4 3 ( x1 )+2

    17.

    ( x2 ) 2 7 2 ( y+7 ) 2 7 2 =1; ( x2 ) 2 7 2 ( y+7 ) 2 7 2 =1; vertices: ( 9,7 ),( 5,7 ); ( 9,7 ),( 5,7 ); foci: ( 2+7 2 ,7 ),( 27 2 ,7 ); ( 2+7 2 ,7 ),( 27 2 ,7 ); asymptotes: y=x9,y=x5 y=x9,y=x5

    19.

    ( x+3 ) 2 3 2 ( y3 ) 2 3 2 =1; ( x+3 ) 2 3 2 ( y3 ) 2 3 2 =1; vertices: ( 0,3 ),( 6,3 ); ( 0,3 ),( 6,3 ); foci: ( 3+3 2 ,1 ),( 33 2 ,1 ); ( 3+3 2 ,1 ),( 33 2 ,1 ); asymptotes: y=x+6,y=x y=x+6,y=x

    21.

    ( y4 ) 2 2 2 ( x3 ) 2 4 2 =1; ( y4 ) 2 2 2 ( x3 ) 2 4 2 =1; vertices: ( 3,6 ),( 3,2 ); ( 3,6 ),( 3,2 ); foci: ( 3,4+2 5 ),( 3,42 5 ); ( 3,4+2 5 ),( 3,42 5 ); asymptotes: y= 1 2 ( x3 )+4,y= 1 2 ( x3 )+4 y= 1 2 ( x3 )+4,y= 1 2 ( x3 )+4

    23.

    ( y+5 ) 2 7 2 ( x+1 ) 2 70 2 =1; ( y+5 ) 2 7 2 ( x+1 ) 2 70 2 =1; vertices: ( 1,2 ),( 1,12 ); ( 1,2 ),( 1,12 ); foci: ( 1,5+7 101 ),( 1,57 101 ); ( 1,5+7 101 ),( 1,57 101 ); asymptotes: y= 1 10 ( x+1 )5,y= 1 10 ( x+1 )5 y= 1 10 ( x+1 )5,y= 1 10 ( x+1 )5

    25.

    ( x+3 ) 2 5 2 ( y4 ) 2 2 2 =1; ( x+3 ) 2 5 2 ( y4 ) 2 2 2 =1; vertices: ( 2,4 ),( 8,4 ); ( 2,4 ),( 8,4 ); foci: ( 3+ 29 ,4 ),( 3 29 ,4 ); ( 3+ 29 ,4 ),( 3 29 ,4 ); asymptotes: y= 2 5 ( x+3 )+4,y= 2 5 ( x+3 )+4 y= 2 5 ( x+3 )+4,y= 2 5 ( x+3 )+4

    27.

    y= 2 5 ( x3 )4,y= 2 5 ( x3 )4 y= 2 5 ( x3 )4,y= 2 5 ( x3 )4

    29.

    y= 3 4 ( x1 )+1,y= 3 4 ( x1 )+1 y= 3 4 ( x1 )+1,y= 3 4 ( x1 )+1

    31.
    fdf6c3f2cbab7f8dee97789fe86fdf24d4e1694b
    33.
    54d1247006162f2e403bd70c80648a6ff3b49043
    35.
    03a3f623d0d44a6acff3d2c286117c3257e23d25
    37.
    3244ba9a0895805241eede69173a4c04dcab90cd
    39.
    5461b9d196e49a2da673af59061f233c21bc8e5b
    41.
    4c8b4cf4a99c74175532412a7bdd37f56569400a
    43.
    ebb78cf02271a24caf2fd955b8c8a4f3ff7841a9
    45.

    x 2 9 y 2 16 =1 x 2 9 y 2 16 =1

    47.

    ( x6 ) 2 25 ( y1 ) 2 11 =1 ( x6 ) 2 25 ( y1 ) 2 11 =1

    49.

    ( x4 ) 2 25 ( y2 ) 2 1 =1 ( x4 ) 2 25 ( y2 ) 2 1 =1

    51.

    y 2 16 x 2 25 =1 y 2 16 x 2 25 =1

    53.

    y 2 9 ( x+1 ) 2 9 =1 y 2 9 ( x+1 ) 2 9 =1

    55.

    ( x+3 ) 2 25 ( y+3 ) 2 25 =1 ( x+3 ) 2 25 ( y+3 ) 2 25 =1

    57.

    y( x )=3 x 2 +1 ,y( x )=3 x 2 +1 y( x )=3 x 2 +1 ,y( x )=3 x 2 +1

    cd14d7f489d4ccc82593bd0107eed53f2351f83b
    59.

    y( x )=1+2 x 2 +4x+5 ,y( x )=12 x 2 +4x+5 y( x )=1+2 x 2 +4x+5 ,y( x )=12 x 2 +4x+5

    0c89c8c4010bed5dbff59647221ba92b78cd3b17
    61.

    x 2 25 y 2 25 =1 x 2 25 y 2 25 =1

    b1369bb79cc265b54f7540771cf6e366e317eb71
    63.

    x 2 100 y 2 25 =1 x 2 100 y 2 25 =1

    94d71c6d4a5025a1941f3073aa36296e5dc24cc7
    65.

    x 2 400 y 2 225 =1 x 2 400 y 2 225 =1

    c2944b00fb78c091c1004129d33273d63c350df9
    67.

    4(x-1)2-y22=16 4(x-1)2-y22=16

    69.

    ( xh ) 2 a2 - (y-k)2 b2 =(x-3)2-9y2=4 ( xh ) 2 a2 -(y-k)2 b2=(x-3)2-9y2=4

    12.3 Section Exercises

    1.

    A parabola is the set of points in the plane that lie equidistant from a fixed point, the focus, and a fixed line, the directrix.

    3.

    The graph will open down.

    5.

    The distance between the focus and directrix will increase.

    7.

    yes x2=4(116)y x2=4(116)y

    9.

    yes ( y3 ) 2 =4(2)( x2 ) ( y3 ) 2 =4(2)( x2 )

    11.

    y 2 = 1 8 x,V:(0,0);F:( 1 32 ,0 );d:x= 1 32 y 2 = 1 8 x,V:(0,0);F:( 1 32 ,0 );d:x= 1 32

    13.

    x 2 = 1 4 y,V:( 0,0 );F:( 0, 1 16 );d:y= 1 16 x 2 = 1 4 y,V:( 0,0 );F:( 0, 1 16 );d:y= 1 16

    15.

    y 2 = 1 36 x,V:( 0,0 );F:( 1 144 ,0 );d:x= 1 144 y 2 = 1 36 x,V:( 0,0 );F:( 1 144 ,0 );d:x= 1 144

    17.

    ( x1 ) 2 =4( y1 ),V:( 1,1 );F:( 1,2 );d:y=0 ( x1 ) 2 =4( y1 ),V:( 1,1 );F:( 1,2 );d:y=0

    19.

    ( y4 ) 2 =2( x+3 ),V:( 3,4 );F:( 5 2 ,4 );d:x= 7 2 ( y4 ) 2 =2( x+3 ),V:( 3,4 );F:( 5 2 ,4 );d:x= 7 2

    21.

    ( x+4 ) 2 =24( y+1 ),V:( 4,1 );F:( 4,5 );d:y=−7 ( x+4 ) 2 =24( y+1 ),V:( 4,1 );F:( 4,5 );d:y=−7

    23.

    ( y3 ) 2 =−12( x+1 ),V:( 1,3 );F:( 4,3 );d:x=2 ( y3 ) 2 =−12( x+1 ),V:( 1,3 );F:( 4,3 );d:x=2

    25.

    ( x5 ) 2 = 4 5 ( y+3 ),V:( 5,3 );F:( 5, 14 5 );d:y= 16 5 ( x5 ) 2 = 4 5 ( y+3 ),V:( 5,3 );F:( 5, 14 5 );d:y= 16 5

    27.

    ( x2 ) 2 =−2( y5 ),V:( 2,5 );F:( 2, 9 2 );d:y= 11 2 ( x2 ) 2 =−2( y5 ),V:( 2,5 );F:( 2, 9 2 );d:y= 11 2

    29.

    ( y1 ) 2 = 4 3 ( x5 ),V:( 5,1 );F:( 16 3 ,1 );d:x= 14 3 ( y1 ) 2 = 4 3 ( x5 ),V:( 5,1 );F:( 16 3 ,1 );d:x= 14 3

    31.
    87f03c7644e4801d4b687b6d66ae591f570026d6
    33.
    73ced13bac4e2882aef12168e7259c91a7af7603
    35.
    ff1769bd2efa0c894e105160760af7578d257fa0
    37.
    da9c60f65c54dd12c45bc111afa137f6019beb12
    39.
    3d83d25d75e50810486c080f27bbb4bcbf70af2a
    41.
    d17cdffa57fd836e867c009ee9132f9dde896351
    43.
    0710b58cba97ea10acd70b6154e2ddbdda693687
    45.

    x 2 =−16y x 2 =−16y

    47.

    ( y2 ) 2 =4 2 ( x2 ) ( y2 ) 2 =4 2 ( x2 )

    49.

    ( y+ 3 ) 2 =−4 2 ( x 2 ) ( y+ 3 ) 2 =−4 2 ( x 2 )

    51.

    x 2 =y x 2 =y

    53.

    ( y2 ) 2 = 1 4 ( x+2 ) ( y2 ) 2 = 1 4 ( x+2 )

    55.

    ( y 3 ) 2 =4 5 ( x+ 2 ) ( y 3 ) 2 =4 5 ( x+ 2 )

    57.

    y 2 =−8x y 2 =−8x

    59.

    ( y+1 ) 2 =12( x+3 ) ( y+1 ) 2 =12( x+3 )

    61.

    ( 0,1 ) ( 0,1 )

    63.

    At the point 2.25 feet above the vertex.

    65.

    0.5625 feet

    67.

    x 2 =−125( y20 ), x 2 =−125( y20 ), height is 7.2 feet

    69.

    2304 feet

    12.4 Section Exercises

    1.

    The xy xy term causes a rotation of the graph to occur.

    3.

    The conic section is a hyperbola.

    5.

    It gives the angle of rotation of the axes in order to eliminate the xy xy term.

    7.

    AB=0, AB=0, parabola

    9.

    AB=4<0, AB=4<0, hyperbola

    11.

    AB=6>0, AB=6>0, ellipse

    13.

    B 2 4AC=0, B 2 4AC=0, parabola

    15.

    B 2 4AC=0, B 2 4AC=0, parabola

    17.

    B 2 4AC=96<0, B 2 4AC=96<0, ellipse

    19.

    7 x 2 +9 y 2 4=0 7 x 2 +9 y 2 4=0

    21.

    3 x 2 +2 x y 5 y 2 +1=0 3 x 2 +2 x y 5 y 2 +1=0

    23.

    θ= 60 ,11 x 2 y 2 + 3 x + y 4=0 θ= 60 ,11 x 2 y 2 + 3 x + y 4=0

    25.

    θ= 150 ,21 x 2 +9 y 2 +4 x 4 3 y 6=0 θ= 150 ,21 x 2 +9 y 2 +4 x 4 3 y 6=0

    27.

    θ 36.9 ,125 x 2 +6 x 42 y +10=0 θ 36.9 ,125 x 2 +6 x 42 y +10=0

    29.

    θ= 45 ,3 x 2 y 2 2 x + 2 y +1=0 θ= 45 ,3 x 2 y 2 2 x + 2 y +1=0

    31.

    2 2 ( x + y )= 1 2 ( x y ) 2 2 2 ( x + y )= 1 2 ( x y ) 2

    6dfbb83afe961ca0596078c9956dbc79321bdfbf
    33.

    ( x y ) 2 8 + ( x + y ) 2 2 =1 ( x y ) 2 8 + ( x + y ) 2 2 =1

    f9567d3f8610ada96b529721a0e3a7f885c6c5f7
    35.

    ( x + y ) 2 2 ( x y ) 2 2 =1 ( x + y ) 2 2 ( x y ) 2 2 =1

    16a8dc7a0c91fa720bf38b60258a525228ca1ce4
    37.

    3 2 x 1 2 y = ( 1 2 x + 3 2 y 1 ) 2 3 2 x 1 2 y = ( 1 2 x + 3 2 y 1 ) 2

    0f8a127ab0d1d92ee1ba9f74f5e7d685f22f3e12
    39.
    d61d20f268f293feb330cd594f7093dfe9e07ee6
    41.
    254eac23511aacad4f5ed93fc5b6c4c997685cd3
    43.
    63435ab794e839984f36abed6535fdc65e838646
    45.
    0aa59907af779f09cf2c7f2f1b6e28ea12eb2bad
    47.
    3d28abebf73c594f3716f13f57d5c0f03494d7f3
    49.
    b801c153d19fdebb8a380f90fdc1537a80abf9ab
    51.

    θ= 45 θ= 45

    498d436b6b6c1ca917e669fa252c797fa1a96770
    53.

    θ= 60 θ= 60

    023617cfa53a2a36fa9828ebf63880766626c9aa
    55.

    θ 36.9 θ 36.9

    6a3f4621b2ae4c93354f6e47b238cdc7789999fa
    57.

    4 6 <k<4 6 4 6 <k<4 6

    59.

    k=2 k=2

    12.5 Section Exercises

    1.

    If eccentricity is less than 1, it is an ellipse. If eccentricity is equal to 1, it is a parabola. If eccentricity is greater than 1, it is a hyperbola.

    3.

    The directrix will be parallel to the polar axis.

    5.

    One of the foci will be located at the origin.

    7.

    Parabola with e=1 e=1 and directrix 3 4 3 4 units below the pole.

    9.

    Hyperbola with e=2 e=2 and directrix 5 2 5 2 units above the pole.

    11.

    Parabola with e=1 e=1 and directrix 3 10 3 10 units to the right of the pole.

    13.

    Ellipse with e= 2 7 e= 2 7 and directrix 2 2 units to the right of the pole.

    15.

    Hyperbola with e= 5 3 e= 5 3 and directrix 11 5 11 5 units above the pole.

    17.

    Hyperbola with e= 8 7 e= 8 7 and directrix 7 8 7 8 units to the right of the pole.

    19.

    25 x 2 +16 y 2 12y4=0 25 x 2 +16 y 2 12y4=0

    21.

    21 x 2 4 y 2 30x+9=0 21 x 2 4 y 2 30x+9=0

    23.

    64 y 2 =48x+9 64 y 2 =48x+9

    25.

    96 y 2 25 x 2 +110y+25=0 96 y 2 25 x 2 +110y+25=0

    27.

    3 x 2 +4 y 2 2x1=0 3 x 2 +4 y 2 2x1=0

    29.

    5 x 2 +9 y 2 24x36=0 5 x 2 +9 y 2 24x36=0

    31.
    038c28cff1c24a0d41cab9a4bbc3b1cbebcfc596
    33.
    3189655a5a94b104c7153374b6096c080255ac30
    35.
    6e9344b2f87ac1ea8294801c3900188d01accde7
    37.
    5600759557d1c7da78884945773f3607fdad67ec
    39.
    126ddd055120076e8a9b7b02c2a35717b5dbe591
    41.
    f300b66b92797349e4ef1268ad4723d3e6565bd7
    43.

    r= 4 5+cosθ r= 4 5+cosθ

    45.

    r= 4 1+2sinθ r= 4 1+2sinθ

    47.

    r= 1 1+cosθ r= 1 1+cosθ

    49.

    r= 7 828cosθ r= 7 828cosθ

    51.

    r= 12 2+3sinθ r= 12 2+3sinθ

    53.

    r= 15 43cosθ r= 15 43cosθ

    55.

    r= 3 33cosθ r= 3 33cosθ

    57.

    r=± 2 1+sinθcosθ r=± 2 1+sinθcosθ

    59.

    r=± 2 4cosθ+3sinθ r=± 2 4cosθ+3sinθ

    Review Exercises

    1.

    x 2 5 2 + y 2 8 2 =1; x 2 5 2 + y 2 8 2 =1; center: ( 0,0 ); ( 0,0 ); vertices: ( 5,0 ),( −5,0 ),( 0,8 ),( 0,8 ); ( 5,0 ),( −5,0 ),( 0,8 ),( 0,8 ); foci: ( 0, 39 ),( 0, 39 ) ( 0, 39 ),( 0, 39 )

    3.

    (x+3) 2 1 2 + (y2) 2 3 2 =1(3,2);(2,2),(4,2),(3,5),(3,1);( 3,2+2 2 ),( 3,22 2 ) (x+3) 2 1 2 + (y2) 2 3 2 =1(3,2);(2,2),(4,2),(3,5),(3,1);( 3,2+2 2 ),( 3,22 2 )

    5.

    center: ( 0,0 ); ( 0,0 ); vertices: ( 6,0 ),( −6,0 ),( 0,3 ),( 0,−3 ); ( 6,0 ),( −6,0 ),( 0,3 ),( 0,−3 ); foci: ( 3 3 ,0 ),( 3 3 ,0 ) ( 3 3 ,0 ),( 3 3 ,0 )

    c080be43df7edfa438788778d0dfb36e9807b15a
    7.

    center: ( −2,−2 ); ( −2,−2 ); vertices: ( 2,−2 ),( −6,−2 ),( −2,6 ),( −2,−10 ); ( 2,−2 ),( −6,−2 ),( −2,6 ),( −2,−10 ); foci: ( −2,−2+4 3 , ),( −2,−2−4 3 ) ( −2,−2+4 3 , ),( −2,−2−4 3 )

    8c4bc9ce464677072df07dd21e342c394f5f3b72
    9.

    x 2 25 + y 2 16 =1 x 2 25 + y 2 16 =1

    11.

    Approximately 35.71 feet

    13.

    ( y+1 ) 2 4 2 ( x4 ) 2 6 2 =1; ( y+1 ) 2 4 2 ( x4 ) 2 6 2 =1; center: ( 4,−1 ); ( 4,−1 ); vertices: ( 4,3 ),( 4,−5 ); ( 4,3 ),( 4,−5 ); foci: ( 4,−1+2 13 ),( 4,−12 13 ) ( 4,−1+2 13 ),( 4,−12 13 )

    15.

    ( x2 ) 2 2 2 ( y+3 ) 2 ( 2 3 ) 2 =1; ( x2 ) 2 2 2 ( y+3 ) 2 ( 2 3 ) 2 =1; center: ( 2,−3 ); ( 2,−3 ); vertices: ( 4,−3 ),( 0,−3 ); ( 4,−3 ),( 0,−3 ); foci: ( 6,−3 ),( −2,−3 ) ( 6,−3 ),( −2,−3 )

    17. 14011370bb7e706d3a44406f51d4a7df7817ae21
    19. 29b012d8db268d6179759aae32838eaee384d22f
    21.

    ( x5 ) 2 1 ( y7 ) 2 3 =1 ( x5 ) 2 1 ( y7 ) 2 3 =1

    23.

    ( x+2 ) 2 = 1 2 ( y1 ); ( x+2 ) 2 = 1 2 ( y1 ); vertex: ( −2,1 ); ( −2,1 ); focus: ( −2, 9 8 ); ( −2, 9 8 ); directrix: y= 7 8 y= 7 8

    25.

    ( x+5 ) 2 =( y+2 ); ( x+5 ) 2 =( y+2 ); vertex: ( 5,2 ); ( 5,2 ); focus: ( 5, 7 4 ); ( 5, 7 4 ); directrix: y= 9 4 y= 9 4

    27. b71e1c477d32d4d74fdee8e88b9933f6cf1123e7
    29. c35e207ae4b9969f15caf1ad8221ba209440a0bb
    31.

    ( x2 ) 2 =( 1 2 )( y1 ) ( x2 ) 2 =( 1 2 )( y1 )

    33.

    B 2 4AC=0, B 2 4AC=0, parabola

    35.

    B 2 4AC=31<0, B 2 4AC=31<0, ellipse

    37.

    θ= 45 , x 2 +3 y 2 12=0 θ= 45 , x 2 +3 y 2 12=0

    39.

    θ= 45 θ= 45

    fe5c56cda2095a5098b339ee3638507a1ef8011e
    41.

    Hyperbola with e=5 e=5 and directrix 2 2 units to the left of the pole.

    43.

    Ellipse with e= 3 4 e= 3 4 and directrix 1 3 1 3 unit above the pole.

    45. a20b3fc13b553bf1692a5ca36dee29c99b11ba7e
    47. f462c254f631e4fedb723bf1af6fc8acad5b50fd
    49.

    r= 3 1+cos θ r= 3 1+cos θ

    Practice Test

    1.

    x 2 3 2 + y 2 2 2 =1; x 2 3 2 + y 2 2 2 =1; center: ( 0,0 ); ( 0,0 ); vertices: ( 3,0 ),( –3,0 ),( 0,2 ),( 0,−2 ); ( 3,0 ),( –3,0 ),( 0,2 ),( 0,−2 ); foci: ( 5 ,0 ),( 5 ,0 ) ( 5 ,0 ),( 5 ,0 )

    3.

    center: ( 3,2 ); ( 3,2 ); vertices: ( 11,2 ),( −5,2 ),( 3,8 ),( 3,−4 ); ( 11,2 ),( −5,2 ),( 3,8 ),( 3,−4 ); foci: ( 3+2 7 ,2 ),( 32 7 ,2 ) ( 3+2 7 ,2 ),( 32 7 ,2 )

    d67b05139eac21c725bbc640004e31558f5463bf
    5.

    ( x1 ) 2 36 + ( y2 ) 2 27 =1 ( x1 ) 2 36 + ( y2 ) 2 27 =1

    7.

    x 2 7 2 y 2 9 2 =1; x 2 7 2 y 2 9 2 =1; center: ( 0,0 ); ( 0,0 ); vertices ( 7,0 ),( −7,0 ); ( 7,0 ),( −7,0 ); foci: ( 130 ,0 ),( 130 ,0 ); ( 130 ,0 ),( 130 ,0 ); asymptotes: y=± 9 7 x y=± 9 7 x

    9.

    center: ( 3,−3 ); ( 3,−3 ); vertices: ( 8,−3 ),( −2,−3 ); ( 8,−3 ),( −2,−3 ); foci: ( 3+ 26 ,−3 ),( 3 26 ,−3 ); ( 3+ 26 ,−3 ),( 3 26 ,−3 ); asymptotes: y=± 1 5 (x3)3 y=± 1 5 (x3)3

    eaa9361c5af97ff641ce1120321df4470291c9ac
    11.

    ( y3 ) 2 1 ( x1 ) 2 8 =1 ( y3 ) 2 1 ( x1 ) 2 8 =1

    13.

    ( x2 ) 2 = 1 3 ( y+1 ); ( x2 ) 2 = 1 3 ( y+1 ); vertex: ( 2,−1 ); ( 2,−1 ); focus: ( 2, 11 12 ); ( 2, 11 12 ); directrix: y= 13 12 y= 13 12

    15. 4ddde24b5f86b3509827cd8575d9f899d2f39f4d
    17.

    Approximately 8.49 8.49 feet

    19.

    parabola; θ 63.4 θ 63.4

    21.

    x 2 4 x +3 y =0 x 2 4 x +3 y =0

    4b516d594ce21e55f34d07e49f3ac3b5ce87335b
    23.

    Hyperbola with e= 3 2 , e= 3 2 , and directrix 5 6 5 6 units to the right of the pole.

    25.
    cac72f4524e481daa679ab9d108219f1de829d65

    14.2.12: Chapter 12 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?