# 14.1: Groups Acting on Sets

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Let $$X$$ be a set and $$G$$ be a group. A (left) action of $$G$$ on $$X$$ is a map $$G \times X \rightarrow X$$ given by $$(g,x) \mapsto gx\text{,}$$ where

1. $$ex = x$$ for all $$x \in X\text{;}$$
2. $$(g_1 g_2)x = g_1(g_2 x)$$ for all $$x \in X$$ and all $$g_1, g_2 \in G\text{.}$$

Under these considerations $$X$$ is called a $$G$$-set. Notice that we are not requiring $$X$$ to be related to $$G$$ in any way. It is true that every group $$G$$ acts on every set $$X$$ by the trivial action $$(g,x) \mapsto x\text{;}$$ however, group actions are more interesting if the set $$X$$ is somehow related to the group $$G\text{.}$$

Example $$14.1$$

Let $$G = GL_2( {\mathbb R} )$$ and $$X = {\mathbb R}^2\text{.}$$

Solution

Then $$G$$ acts on $$X$$ by left multiplication. If $$v \in {\mathbb R}^2$$ and $$I$$ is the identity matrix, then $$Iv = v\text{.}$$ If $$A$$ and $$B$$ are $$2 \times 2$$ invertible matrices, then $$(AB)v = A(Bv)$$ since matrix multiplication is associative.

Example $$14.2$$

Let $$G = D_4$$ be the symmetry group of a square. If $$X = \{ 1, 2, 3, 4 \}$$ is the set of vertices of the square, then we can consider $$D_4$$ to consist of the following permutations:

$\{ (1), (1 \, 3), (2 \, 4), (1 \, 4 \, 3 \, 2), (1 \, 2 \, 3 \, 4), (1 \, 2)(3 \, 4), (1 \, 4)(2 \, 3), (1 \, 3)(2 \, 4) \}\text{.} \nonumber$

Solution

The elements of $$D_4$$ act on $$X$$ as functions. The permutation $$(1 \, 3)(2 \, 4)$$ acts on vertex $$1$$ by sending it to vertex $$3\text{,}$$ on vertex $$2$$ by sending it to vertex $$4\text{,}$$ and so on. It is easy to see that the axioms of a group action are satisfied.

In general, if $$X$$ is any set and $$G$$ is a subgroup of $$S_X\text{,}$$ the group of all permutations acting on $$X\text{,}$$ then $$X$$ is a $$G$$-set under the group action

$(\sigma, x) \mapsto \sigma(x) \nonumber$

for $$\sigma \in G$$ and $$x \in X\text{.}$$

Example $$14.3$$

If we let $$X = G\text{,}$$ then every group $$G$$ acts on itself by the left regular representation; that is, $$(g,x) \mapsto \lambda_g(x) = gx\text{,}$$ where $$\lambda_g$$ is left multiplication:

\begin{gather*} e \cdot x = \lambda_e x = ex = x\\ (gh) \cdot x = \lambda_{gh}x = \lambda_g \lambda_h x = \lambda_g(hx) = g \cdot ( h \cdot x)\text{.} \end{gather*}

Solution

If $$H$$ is a subgroup of $$G\text{,}$$ then $$G$$ is an $$H$$-set under left multiplication by elements of $$H\text{.}$$

Example $$14.4$$

Let $$G$$ be a group and suppose that $$X=G\text{.}$$ If $$H$$ is a subgroup of $$G\text{,}$$ then $$G$$ is an $$H$$-set under conjugation; that is, we can define an action of $$H$$ on $$G\text{,}$$

$H \times G \rightarrow G\text{,} \nonumber$

via

$(h,g) \mapsto hgh^{-1} \nonumber$for $$h \in H$$ and $$g \in G\text{.}$$

Solution

Clearly, the first axiom for a group action holds. Observing that

\begin{align*} (h_1 h_2, g) & = h_1 h_2 g (h_1 h_2 )^{-1}\\ & = h_1( h_2 g h_2^{-1}) h_1^{-1}\\ & = (h_1, (h_2, g) )\text{,} \end{align*}

we see that the second condition is also satisfied.

Example $$14.5$$

Let $$H$$ be a subgroup of $$G$$ and $${\mathcal L}_H$$ the set of left cosets of $$H\text{.}$$ The set $${\mathcal L}_H$$ is a $$G$$-set under the action

$(g, xH) \mapsto gxH\text{.} \nonumber$

Solution

Again, it is easy to see that the first axiom is true. Since $$(g g')xH = g( g'x H)\text{,}$$ the second axiom is also true.

If $$G$$ acts on a set $$X$$ and $$x, y \in X\text{,}$$ then $$x$$ is said to be $$G$$-equivalent to $$y$$ if there exists a $$g \in G$$ such that $$gx =y\text{.}$$ We write $$x \sim_G y$$ or $$x \sim y$$ if two elements are $$G$$-equivalent.

Proposition $$14.6$$

Let $$X$$ be a $$G$$-set. Then $$G$$-equivalence is an equivalence relation on $$X\text{.}$$

Proof

The relation $$\sim$$ is reflexive since $$ex = x\text{.}$$ Suppose that $$x \sim y$$ for $$x, y \in X\text{.}$$ Then there exists a $$g$$ such that $$gx = y\text{.}$$ In this case $$g^{-1}y=x\text{;}$$ hence, $$y \sim x\text{.}$$ To show that the relation is transitive, suppose that $$x \sim y$$ and $$y \sim z\text{.}$$ Then there must exist group elements $$g$$ and $$h$$ such that $$gx = y$$ and $$hy= z\text{.}$$ So $$z = hy = (hg)x\text{,}$$ and $$x$$ is equivalent to $$z\text{.}$$

If $$X$$ is a $$G$$-set, then each partition of $$X$$ associated with $$G$$-equivalence is called an orbit of $$X$$ under $$G\text{.}$$ We will denote the orbit that contains an element $$x$$ of $$X$$ by $${\mathcal O}_x\text{.}$$

Example $$14.7$$

Let $$G$$ be the permutation group defined by

$G =\{(1), (1 \, 2 \, 3), (1 \, 3 \, 2), (4 \, 5), (1 \, 2 \, 3)(4 \, 5), (1 \, 3 \, 2)(4 \, 5) \} \nonumber$

and $$X = \{ 1, 2, 3, 4, 5\}\text{.}$$

Solution

Then $$X$$ is a $$G$$-set. The orbits are $${\mathcal O}_1 = {\mathcal O}_2 = {\mathcal O}_3 =\{1, 2, 3\}$$ and $${\mathcal O}_4 = {\mathcal O}_5 = \{4, 5\}\text{.}$$

Now suppose that $$G$$ is a group acting on a set $$X$$ and let $$g$$ be an element of $$G\text{.}$$ The fixed point set of $$g$$ in $$X\text{,}$$ denoted by $$X_g\text{,}$$ is the set of all $$x \in X$$ such that $$gx = x\text{.}$$ We can also study the group elements $$g$$ that fix a given $$x \in X\text{.}$$ This set is more than a subset of $$G\text{,}$$ it is a subgroup. This subgroup is called the stabilizer subgroup or isotropy subgroup of $$x\text{.}$$ We will denote the stabilizer subgroup of $$x$$ by $$G_x\text{.}$$

Remark $$14.8$$

The ideal gas law is easy to remember and apply in solving problems, as long as you get the proper values a

Example $$14.9$$

Let $$X = \{1, 2, 3, 4, 5, 6\}$$ and suppose that $$G$$ is the permutation group given by the permutations

$\{ (1), (1 \, 2)(3 \, 4 \, 5 \, 6), (3 \, 5)(4 \, 6), (1 \, 2)( 3 \, 6 \, 5 \, 4) \}\text{.} \nonumber$

Solution

Then the fixed point sets of $$X$$ under the action of $$G$$ are

\begin{gather*} X_{(1)} = X,\\ X_{(3 \, 5)(4 \, 6)} = \{1,2\},\\ X_{(1 \, 2)(3 \, 4 \, 5 \, 6)} = X_{(1 \, 2)(3 \, 6 \,5 \, 4)} = \emptyset\text{,} \end{gather*}

and the stabilizer subgroups are

\begin{gather*} G_1 = G_2 = \{(1), (3 \, 5)(4 \, 6) \},\\ G_3 = G_4 = G_5 = G_6 = \{(1)\}\text{.} \end{gather*}

It is easily seen that $$G_x$$ is a subgroup of $$G$$ for each $$x \in X\text{.}$$

Proposition $$14.10$$

Let $$G$$ be a group acting on a set $$X$$ and $$x \in X\text{.}$$ The stabilizer group of $$x\text{,}$$ $$G_x\text{,}$$ is a subgroup of $$G\text{.}$$

Proof

Clearly, $$e \in G_x$$ since the identity fixes every element in the set $$X\text{.}$$ Let $$g, h \in G_x\text{.}$$ Then $$gx = x$$ and $$hx = x\text{.}$$ So $$(gh)x = g(hx) = gx = x\text{;}$$ hence, the product of two elements in $$G_x$$ is also in $$G_x\text{.}$$ Finally, if $$g \in G_x\text{,}$$ then $$x = ex = (g^{-1}g)x = (g^{-1})gx = g^{-1} x\text{.}$$ So $$g^{-1}$$ is in $$G_x\text{.}$$

We will denote the number of elements in the fixed point set of an element $$g \in G$$ by $$|X_g|$$ and denote the number of elements in the orbit of $$x \in X$$ by $$|{\mathcal O}_x|\text{.}$$ The next theorem demonstrates the relationship between orbits of an element $$x \in X$$ and the left cosets of $$G_x$$ in $$G\text{.}$$

Theorem $$14.11$$

Let $$G$$ be a finite group and $$X$$ a finite $$G$$-set. If $$x \in X\text{,}$$ then $$|{\mathcal O}_x| = [G:G_x]\text{.}$$

Proof

We know that $$|G|/|G_x|$$ is the number of left cosets of $$G_x$$ in $$G$$ by Lagrange's Theorem (Theorem $$6.10$$). We will define a bijective map $$\phi$$ between the orbit $${\mathcal O}_x$$ of $$X$$ and the set of left cosets $${\mathcal L}_{G_x}$$ of $$G_x$$ in $$G\text{.}$$ Let $$y \in {\mathcal O}_x\text{.}$$ Then there exists a $$g$$ in $$G$$ such that $$g x = y\text{.}$$ Define $$\phi$$ by $$\phi( y ) = g G_x\text{.}$$ To show that $$\phi$$ is one-to-one, assume that $$\phi(y_1) = \phi(y_2)\text{.}$$ Then

$\phi(y_1) = g_1 G_x = g_2 G_x = \phi(y_2)\text{,} \nonumber$

where $$g_1 x = y_1$$ and $$g_2 x = y_2\text{.}$$ Since $$g_1 G_x = g_2 G_x\text{,}$$ there exists a $$g \in G_x$$ such that $$g_2 = g_1 g\text{,}$$

$y_2 = g_2 x = g_1 g x = g_1 x = y_1; \nonumber$

consequently, the map $$\phi$$ is one-to-one. Finally, we must show that the map $$\phi$$ is onto. Let $$g G_x$$ be a left coset. If $$g x = y\text{,}$$ then $$\phi(y) = g G_x\text{.}$$

This page titled 14.1: Groups Acting on Sets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Thomas W. Judson (Abstract Algebra: Theory and Applications) via source content that was edited to the style and standards of the LibreTexts platform.