# 14.2: The Class Equation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Let $$X$$ be a finite $$G$$-set and $$X_G$$ be the set of fixed points in $$X\text{;}$$ that is,

$X_G = \{ x \in X : gx = x \text{ for all } g \in G \}\text{.} \nonumber$

Since the orbits of the action partition $$X\text{,}$$

$|X| = |X_G| + \sum_{i = k}^n |{\mathcal O}_{x_i}|\text{,} \nonumber$

where $$x_k, \ldots, x_n$$ are representatives from the distinct nontrivial orbits of $$X\text{.}$$

Now consider the special case in which $$G$$ acts on itself by conjugation, $$(g,x) \mapsto gxg^{-1}\text{.}$$ The center of $$G\text{,}$$

$Z(G) = \{x : xg = gx \text{ for all } g \in G \}\text{,} \nonumber$

is the set of points that are fixed by conjugation. The nontrivial orbits of the action are called the conjugacy classes of $$G\text{.}$$ If $$x_1, \ldots, x_k$$ are representatives from each of the nontrivial conjugacy classes of $$G$$ and $$|{\mathcal O}_{x_1}| = n_1, \ldots, |{\mathcal O}_{x_k}| = n_k\text{,}$$ then

$|G| = |Z(G)| + n_1 + \cdots + n_k\text{.} \nonumber$

The stabilizer subgroups of each of the $$x_i$$'s, $$C(x_i) = \{ g \in G: g x_i = x_i g \}\text{,}$$ are called the centralizer subgroups of the $$x_i$$'s. From Theorem $$14.11$$, we obtain the class equation:

$|G| = |Z(G)| + [G: C(x_1) ] + \cdots + [ G: C(x_k)]\text{.} \nonumber$

One of the consequences of the class equation is that the order of each conjugacy class must divide the order of $$G\text{.}$$

Example $$14.12$$

It is easy to check that the conjugacy classes in $$S_3$$ are the following:

$\{ (1) \}, \quad \{ (1 \, 2 \, 3), (1 \, 3 \, 2) \}, \quad \{(1 \, 2), (1 \, 3), (2 \, 3) \}\text{.} \nonumber$

Solution

The class equation is $$6 = 1+2+3\text{.}$$

Example $$14.13$$

The center of $$D_4$$ is $$\{ (1), (1 \, 3)(2 \, 4) \}\text{,}$$ and the conjugacy classes are

$\{ (1 \, 3), (2 \, 4) \}, \quad \{ (1 \, 4 \, 3 \, 2), (1 \, 2 \, 3 \, 4) \}, \quad \{ (1 \, 2)(3 \, 4), (1 \, 4)(2 \, 3) \}\text{.} \nonumber$

Solution

Thus, the class equation for $$D_4$$ is $$8 = 2 + 2 + 2 + 2\text{.}$$

Example $$14.14$$

For $$S_n$$ it takes a bit of work to find the conjugacy classes. We begin with cycles. Suppose that $$\sigma = ( a_1, \ldots, a_k)$$ is a cycle and let $$\tau \in S_n\text{.}$$

Solution

By Theorem $$6.16$$,

$\tau \sigma \tau^{-1} = ( \tau( a_1), \ldots, \tau(a_k))\text{.} \nonumber$

Consequently, any two cycles of the same length are conjugate. Now let $$\sigma = \sigma_1 \sigma_2 \cdots \sigma_r$$ be a cycle decomposition, where the length of each cycle $$\sigma_i$$ is $$r_i\text{.}$$ Then $$\sigma$$ is conjugate to every other $$\tau \in S_n$$ whose cycle decomposition has the same lengths.

The number of conjugate classes in $$S_n$$ is the number of ways in which $$n$$ can be partitioned into sums of positive integers. In the case of $$S_3$$ for example, we can partition the integer $$3$$ into the following three sums:

\begin{align*} 3 & = 1 + 1 + 1\\ 3 & = 1 + 2\\ 3 & = 3; \end{align*}

therefore, there are three conjugacy classes. There are variations to problem of finding the number of such partitions for any positive integer $$n$$ that are what computer scientists call NP-complete. This effectively means that the problem cannot be solved for a large $$n$$ because the computations would be too time-consuming for even the largest computer.

Theorem $$14.15$$

Let $$G$$ be a group of order $$p^n$$ where $$p$$ is prime. Then $$G$$ has a nontrivial center.

Proof

We apply the class equation

$|G| = |Z(G)| + n_1 + \cdots + n_k\text{.} \nonumber$

Since each $$n_i \gt 1$$ and $$n_i \mid |G|\text{,}$$ it follows that $$p$$ must divide each $$n_i\text{.}$$ Also, $$p \mid |G|\text{;}$$ hence, $$p$$ must divide $$|Z(G)|\text{.}$$ Since the identity is always in the center of $$G\text{,}$$ $$|Z(G)| \geq 1\text{.}$$ Therefore, $$|Z(G)| \geq p\text{,}$$ and there exists some $$g \in Z(G)$$ such that $$g \neq 1\text{.}$$

Corollary $$14.16$$

Let $$G$$ be a group of order $$p^2$$ where $$p$$ is prime. Then $$G$$ is abelian.

Proof

By Theorem $$14.15$$, $$|Z(G)| = p$$ or $$p^2\text{.}$$ Suppose that $$|Z(G)| = p\text{.}$$ Then $$Z(G)$$ and $$G / Z(G)$$ both have order $$p$$ and must both be cyclic groups. Choosing a generator $$aZ(G)$$ for $$G / Z(G)\text{,}$$ we can write any element $$gZ(G)$$ in the quotient group as $$a^m Z(G)$$ for some integer $$m\text{;}$$ hence, $$g = a^m x$$ for some $$x$$ in the center of $$G\text{.}$$ Similarly, if $$hZ(G) \in G / Z(G)\text{,}$$ there exists a $$y$$ in $$Z(G)$$ such that $$h = a^n y$$ for some integer $$n\text{.}$$ Since $$x$$ and $$y$$ are in the center of $$G\text{,}$$ they commute with all other elements of $$G\text{;}$$ therefore,

$gh = a^m x a^n y = a^{m+n} x y = a^n y a^m x = hg\text{,} \nonumber$

and $$G$$ must be abelian. Hence, $$|Z(G)| = p^2\text{.}$$

This page titled 14.2: The Class Equation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Thomas W. Judson (Abstract Algebra: Theory and Applications) via source content that was edited to the style and standards of the LibreTexts platform.