Skip to main content
Mathematics LibreTexts

6.6: Exercises

  • Page ID
    84876
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Throughout, write all permutations using disjoint cycle notation, and write all dihedral group elements in standard form.

    1. Let \(\sigma=(134)\text{,}\) \(\tau=(23)(145)\text{,}\) \(\rho=(56)(78)\text{,}\) and \(\alpha=(12)(145)\) in \(S_8\text{.}\) Compute the following.
    1. \(\sigma \tau\)
    2. \(\tau \sigma\)
    3. \(\tau^2\)
    4. \(\tau^{-1}\)
    5. \(o(\tau)\)
    6. \(o(\rho)\)
    7. \(o(\alpha)\)
    8. \(\langle \tau\rangle\)

    2. Prove Lemma 6.3.4.

    3. Prove that \(A_n\) is a subgroup of \(S_n\text{.}\)

    4. Prove or disprove: The set of all odd permutations in \(S_n\) is a subgroup of \(S_n\text{.}\)

    5. Let \(n\) be an integer greater than 2. \(m \in \{1,2,\ldots,n\}\text{,}\) and let \(H=\{\sigma\in S_n\,:\,\sigma(m)=m\}\) (in other words, \(H\) is the set of all permutations in \(S_n\) that fix \(m\)).

    1. Prove that \(H\leq S_n\text{.}\)
    2. Identify a familiar group to which \(H\) is isomorphic. (You do not need to show any work.)

    6. Write \(rfr^2frfr\) in \(D_5\) in standard form.

    7. Prove or disprove: \(D_6\simeq S_6\text{.}\)

    8. Which elements of \(D_4\) (if any)

    1. have order \(2\)?
    2. have order \(3\text{?}\)

    9. Let \(n\) be an even integer that's greater than or equal to \(4\). Prove that \(r^{n/2}\in Z(D_n)\text{:}\) that is, prove that \(r^{n/2}\) commutes with every element of \(D_n\text{.}\) (Do NOT simply refer to the last statement in Theorem \(6.5.4\); that is the statement you are proving here.)


    This page titled 6.6: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jessica K. Sklar via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?