Skip to main content
Mathematics LibreTexts

7.3: The Index of a Subgroup and Lagrange's Theorem

  • Page ID
    84827
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Definition: Index

    We define the index of \(H\) in \(G\), denoted \((G:H)\text{,}\) to be the cardinality of \(G/H\text{.}\)

    Remark

    If \(H\leq G\text{,}\) there are always have the same number of left cosets and right cosets of \(H\) in \(G\text{.}\) The proof of this is left as an exercise for the reader.

    (Keep in mind your proof must apply even when there are infinitely many left and/or right cosets of \(H\) in \(G\text{.}\) Hint: Show there is a bijection between \(G/H\) and the set of all right cosets of \(H\) in \(G\text{.}\))

    In the cases in which \(G/H\) contains infinitely many elements, we won't worry about specific cardinality, and may simply say that the index of \(H\) in \(G\) is infinite, and write \((G:H)=\infty\text{.}\) However, we can, of course, distinguish between countably infinite and uncountably infinite indices.

    Note that if \(G\) is finite then \((G:H)\) must be finite; however, we see below that if \(G\) is infinite then \((G:H)\) could be finite or infinite.

    Example \(\PageIndex{1}\)

    If \((\mathbb{R}:\mathbb{Z})\) were finite, then we'd be able to write \(\mathbb{R}\) as a finite union of countable sets, implying that \(\mathbb{R}\) is countable—which it isn't. Thus, \((\mathbb{R}:\mathbb{Z})=\infty\text{.}\)

    Example \(\PageIndex{2}\)

    Since \(\langle i\rangle =\{i,-1,-i,1\}\) is a finite subgroup of \(C^*\) and \(C^*\) is infinite, we must have that \((C^*:\langle i\rangle )\) is infinite. However, \((C^*:C^*)=1\text{.}\)

    Example \(\PageIndex{3}\)

    Referring to our previous examples, we have:

    \begin{equation*} (S_3:\langle (12)\rangle )=3, \end{equation*} \begin{equation*} (D_4:\langle f\rangle )=4, \end{equation*} \begin{equation*} (\mathbb{Z}:5\mathbb{Z})=5, \end{equation*} \begin{equation*} (4\mathbb{Z}:12\mathbb{Z})=3, \end{equation*} \begin{equation*} \text{and }(\mathbb{Z}_{12}:\langle 4\rangle )=4. \end{equation*}

    Notice that in the cases in which \(G\) is finite, \((G:H)=|G|/|H|\text{.}\) This makes sense, since the left cosets of \(H\) in \(G\) partition \(G\text{,}\) and each left coset has cardinality \(|H|\text{.}\)

    Since the left cosets of a subgroup \(H\) of a group \(G\) partition \(G\) and all have the same cardinality, we have the following two theorems. The first is known as Lagrange's Theorem (named for the French mathematician Joseph-Louis Lagrange).

    Theorem \(\PageIndex{1}\): Lagrange's Theorem

    If \(G\) is a finite group and \(H\leq G\text{,}\) then \(|H|\) divides \(|G|\text{.}\)

    We end this chapter with two corollaries to Lagrange's Theorem.

    Corollary \(\PageIndex{1}\)

    Let \(G\) be a finite group and let \(a\in G\text{.}\) Then \(a^{|G|}=e_G\text{.}\)

    Proof

    Let \(d=o(a)\). By Lagrange's Theorem, \(d\) divides \(|G|\), so there exists \(k∈ \mathbb{Z}\) with \(|G|=dk\). Then \(a^{|G|}=a^{dk}=(a^d)^k=(e_G)^k=e_G\).

    Finally, we have the following corollary, whose proof is left as an exercise for the reader.

    Corollary \(\PageIndex{2}\)

    Let \(G\) be a group of prime order. Then \(G\) is cyclic. It follows that for every prime \(p\text{,}\) there exists a unique group of order \(p\text{,}\) up to isomorphism.


    This page titled 7.3: The Index of a Subgroup and Lagrange's Theorem is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jessica K. Sklar via source content that was edited to the style and standards of the LibreTexts platform.