7.4: Exercises
- Page ID
- 84882
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)1. How many distinct partitions of the set \(S=\{a,b,c,d\}\) are there? You do not need to list them. (Yes, you can find this answer online. But I recommend doing the work yourself for practice working with partitions!)
2.
- Let \(n\in \mathbb{Z}^+\text{.}\) Prove that \(\equiv_n\) is an equivalence relation on \(\mathbb{Z}\text{.}\)
- The cells of the induced partition of \(\mathbb{Z}\) are called the residue classes (or congruence classes) of \(\mathbb{Z}\) modulo \(n\). Using set notation of the form \(\{\ldots,\#, \#,\#,\ldots\}\) for each class, write down the residue classes of \(\mathbb{Z}\) modulo \(4\text{.}\)
3. Let \(G\) be a group with subgroup \(H\text{.}\) Prove that \(\sim_R\) is an equivalence relation on \(G\text{.}\)
4. Find the indices of:
- \(H=\langle (15)(24)\rangle\) in \(S_5\)
- \(K=\langle (2354)(34)\rangle\) in \(S_6\)
- \(A_n\) in \(S_n\)
5. For each subgroup \(H\) of group \(G\text{,}\) (i) find the left and the right cosets of \(H\) in \(G\text{,}\) (ii) decide whether or not \(H\) is normal in \(G\text{,}\) and (iii) find \((G:H)\text{.}\)
Write all permutations using disjoint cycle notation, and write all dihedral group elements using standard form.
- \(H=6\mathbb{Z}\) in \(G=2\mathbb{Z}\)
- \(H=\langle 4\rangle\) in \(\mathbb{Z}_{20}\)
- \(H=\langle (23)\rangle\) in \(G=S_3\)
- \(H=\langle r\rangle\) in \(G=D_4\)
- \(H=\langle f\rangle\) in \(G=D_4\)
6. For each of the following, give an example of a group \(G\) with a subgroup \(H\) that matches the given conditions. If no such example exists, prove that.
- A group \(G\) with subgroup \(H\) such that \(|G/H|=1\text{.}\)
- A finite group \(G\) with subgroup \(H\) such that \(|G/H|=|G|\text{.}\)
- An abelian group \(G\) of order \(8\) containing a non-normal subgroup \(H\) of order 2.
- A group \(G\) of order 8 containing a normal subgroup of order \(2\text{.}\)
- A nonabelian group \(G\) of order 8 containing a normal subgroup of index \(2\text{.}\)
- A group \(G\) of order 8 containing a subgroup of order \(3\text{.}\)
- An infinite group \(G\) containing a subgroup \(H\) of finite index.
- An infinite group \(G\) containing a finite nontrivial subgroup \(H\text{.}\)
7. True/False. For each of the following, write T if the statement is true; otherwise, write F. You do NOT need to provide explanations or show work for this problem. Throughout, let \(G\) be a group with subgroup \(H\) and elements \(a,b\in G\text{.}\)
- If \(a\in bH\) then \(aH\) must equal \(bH\text{.}\)
- \(aH\) must equal \(Ha\text{.}\)
- If \(aH=bH\) then \(Ha\) must equal \(Hb\text{.}\)
- If \(a\in H\) then \(aH\) must equal \(Ha\text{.}\)
- \(H\) must be normal in \(G\) if there exists \(a\in G\) such that \(aH=Ha\text{.}\)
- If \(aH=bH\) then \(ah=bh\) for every \(h\in H\text{.}\)
- If \(G\) is finite, then \(|G/H|\) must be less than \(|G|\text{.}\)
- If \(G\) is finite, then \((G:H)\) must be less than or equal to \(|G|\text{.}\)
8. Let \(G\) be a group of order \(pq\text{,}\) where \(p\) and \(q\) are prime, and let \(H\) be a proper subgroup of \(G\text{.}\) Prove that \(H\) is cyclic.
9. Prove Corollary \(7.3.2\): that is, let \(G\) be a group of prime order, and prove that \(G\) is cyclic.