3.6: Additional exercises
- Page ID
- 85721
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercises
Exercise 1
Euclidean subgroup of the Möbius group.
Let \(\mathbf{E}\) denote the subgroup of the Möbius group \(\mathbf{M}\) generated by rotations and translations, that is, transformations of the type \(z\to e^{it}z\) for \(t\in \mathbb{R}\) and \(z\to z+b\) for \(b\in C\text{.}\) The geometry \((\mathbb{C},\mathbf{E})\) is sometimes called "Euclidean geometry". Is \((\mathbb{C},\mathbf{E})\) equivalent to the Euclidean geometry defined in Subsection 3.1.1? Why or why not?
Exercise 2
Elliptic geometry and spherical geometry.
Is elliptic geometry \((\hat{\mathbb{C}},\mathbf{S})\) equivalent to spherical geometry defined in Subsection 3.1.1? Why or why not?
Exercise 3
Parallel displacements in hyperbolic geometry.
Let \(T\) be an element of the hyperbolic group \(\mathbf{H}\), with a single fixed point \(p\) and normal form
\begin{equation*}
\frac{1}{Tz-p} = \frac{1}{1-p}+\beta.
\end{equation*}
Show that \(p\beta\) must be a pure imaginary number, that is, there must be a real number \(k\) such that \(p\beta=ki\text{.}\)
Exercise 4
Prove that all elements of the elliptic group \(\mathbf{S}\) are elliptic in the normal form sense, i.e., we have \(|\alpha|=1\) in the normal form expression
\begin{equation*}
\frac{Tz-p}{Tz-q}= \alpha
\frac{z-p}{z-q}.
\end{equation*}
Suggestion: First find the fixed points \(p,q\text{,}\) then put \(z=\infty\) in the normal form equation and solve for \(\alpha\text{.}\)
Exercise 5
Alternative derivation of the formula for elliptic group elements.
To obtain an explicit formula for elements of the elliptic group, we begin with a necessary condition. Let \(R=s^{-1}\circ
T\circ s\) be the rotation of \(S^2\) that lifts \(T\) via stereographic projection. If \(P,Q\) are a pair of endpoints of a diameter of \(S^2\text{,}\) then \(R(P),R(Q)\) must also be a pair of endpoints of a diameter. Exercise 1.3.3.7 establishes the condition that two complex numbers \(p,q\) are stereographic projections of endpoints of a diameter if and only if \(pq^\ast = -1\text{.}\) Thus we have the following necessary condition for \(T\text{.}\)
\begin{equation}
pq^\ast = -1 \;\;\text{ implies }\;\; Tp(Tq)^\ast =
-1\label{diamendpreservecond}\tag{3.6.1}
\end{equation}
Now suppose that \(Tz=\frac{az+b}{cz+d}\) with \(ad-bc=1\text{.}\) Solving the equation \(Tp =
\frac{-1}{(T(\frac{-1}{p^\ast}))^\ast}\) leads to \(c=-b^\ast\) and \(d=a^\ast\text{.}\) Thus we conclude that \(T\) has the following form.
\begin{equation}
Tz=\frac{az+b}{-b^\ast z+a^\ast},\;\;|a|^2+|b|^2=1\label{elliptictranssu2form}\tag{3.6.2}
\end{equation}
Carry out the computation to derive (3.6.2). Explain why there is no loss of generality by assuming \(ad-bc=1\text{.}\)
Exercise 6
Identifications of U(H) and S with Rot(S2).
The discussion of elliptic geometry (Section 3.4) establishes two ways to construct rotations from matrices. The purpose of this exercise is to reconcile these identifications. Given \(a,b\in \mathbb{C}\) with \(|a|^2+|b|^2=1\text{,}\) let us define the following objects, all parameterized by \(a,b\text{.}\)
\begin{align*}
M_{a,b} & =\left[\begin{array}{cc}{a}&
{b}\\{-b^\ast}& {a^\ast}\end{array}\right]\\
r_{a,b}& = Re(a)+Im(a)i+Re(b)j+Im(b)k \\
R_{r_{a,b}}& = \left[u\to
r_{a,b}ur_{a,b}^\ast\right]\;\; \text{for }u\in S^2_\mathbb{H}\\
T_{a,b} & = \left[z\to \frac{az+b}{-b^\ast
z+a^\ast}\right] \;\;\text{for }z\in \hat{\mathbb{C}}\\
R_{T_{a,b}} & = s^{-1}\circ T_{a,b}\circ s
\end{align*}
The above objects are organized along two sequences of mappings. The rotation \(R_{r_{a,b}}\) is at the end of the "quaternion path"
\begin{align}
SU(2)& \to U(\mathbb{H}) \to Rot(S^2_\mathbb{H})\label{quatpath}\tag{3.6.3}\\
M_{a,b} &
\to r_{a,b} \to R_{r_{a,b}}\notag
\end{align}
and the rotation \(R_{T_{a,b}}\) is at the end of the "Möbius path"
\begin{align}
SU(2)& \to \S \to Rot(S^2)\label{mobiuspath}\tag{3.6.4}\\
M_{a,b} &
\to T_{a,b} \to R_{T_{a,b}}.\notag
\end{align}
This problem is about comparing the rotations \(R_{r_{a,b}}\) and \(R_{T_{a,b}}\) (see Table 3.6.1) and reconciling the difference. The angles of rotation are the same, but the axes are different, but only by a reordering of coordinates and a minus sign.
\(R_{v,\theta}\) | axis of rotation \(v\) | angle of rotation \(\theta\) |
\(R_{r_{a,b}}\) | \(\frac{(Im(a),Re(b),Im(b))}{\sqrt{1-(Re(a))^2}}\) | \(2\arccos(Re(a))\) |
\(R_{T_{a,b}}\) | \(\frac{(Im(b),-Re(b),Im(a))}{\sqrt{1-(Re(a))^2}}\) | \(2\arccos(Re(a))\) |
The exercises outlined below verify the values for \(v,\theta\) in Table 3.6.1.
- Use Proposition 1.2.9 to justify the values for \(v\) and \(\theta\) for \(R_{r_{a,b}}\) in Table 3.6.1.
- Solve \(T_{a,b}z=z\) to show that one of the fixed points of \(T_{a,b}\) is
\begin{equation*}
p=-ib\left( \frac{\sqrt{1-(Re(a))^2} + Im(a)}{|b|^2}\right).
\end{equation*} - Show that \(s\left(\frac{(Im(b),-Re(b),Im(a))}{\sqrt{1-(Re(a))^2}}\right)=p\text{.}\)
- Show that
\begin{equation}
where \(h\colon \mathbb{R}^3\to \mathbb{R}^3\) is given by \((x,y,z)\to (z,-y,z)\text{.}\) Here's one way to do this: evaluate both sides of (3.6.5) on the three points \(p,0,\infty\text{.}\) Explain why this is sufficient! Use quaternion multiplication to evaluate \(R_{r_{a,b}}\text{.}\) For example, \(R_{r_{a,b}}(1,0,0)=r_{a,b}ir_{a,b}^\ast\) under the natural identification \(\mathbb{R}^3\leftrightarrow \mathbb{R}^3_\mathbb{H}\text{.}\)
T_{a,b} = s\circ h\circ R_{r_{a,b}}\circ h \circ s^{-1} \label{trhcommute}\tag{3.6.5}
\end{equation} - Here is one way to reconcile the quaternion path (3.6.3) with the Möbius path (3.6.4). Let \(H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1& 1 \\ 1& -1\end{array}\right]\) (the matrix \(H\) is sometimes called the Hadamard matrix) and let \(C_{iH}\) denote the map \(M\to (iH)M(iH)^{-1}\text{.}\) Show that the diagram in Figure 3.6.2 commutes. Hint: Notice that \(iH\in SU(2)\) and that \(Q(iH)=\frac{1}{\sqrt{2}}(i+k)\text{,}\) and that \(R_{Q(iH)}=h\text{.}\)
Exercise 7
Pythagorean Theorems.
Let \(\triangle ABC\) be a right triangle with right angle \(\angle C\) with side lengths \(a=d(B,C)\text{,}\) \(b=d(A,C)\text{,}\) and \(c=d(A,B)\) so that the length of the hypotenuse is \(c\text{.}\) See Figure 3.6.3.
- Prove the following identities.
\begin{align}
\cosh \left(\ln\left(\frac{1+u}{1-u}\right)\right) & =
\frac{1+u^2}{1-u^2}\;\;(0\lt u\lt 1)\label{coshhyperbolicdistidentity}\tag{3.6.6}\\
\cos(2\arctan u) & = \frac{1-u^2}{1+u^2}\label{cosellipticistidentity}\tag{3.6.7}
\end{align} - The Hyperbolic Pythagorean Theorem. Show that
\begin{equation}
if \(T\) is a hyperbolic triangle.
\cosh(c)=\cosh(a)\cosh(b)\label{hyperbolicpythagthm}\tag{3.6.8}
\end{equation} - The Elliptic Pythagorean Theorem. Show that
\begin{equation}
if \(T\) is an elliptic triangle.
\cos(c)=\cos(a)\cos(b)\label{ellipticpythagthm}\tag{3.6.9}
\end{equation}
Suggestion: Use a transformation to place \(C\) at \(0\) in \(\mathbb{D}\) or \(\hat{\mathbb{C}}\), with \(A\) is real and \(B\) pure imaginary. Use the formula \(d(p,q) =
\ln((1+u)/(1-u))\) with \(u=\left|\frac{q-p}{1-p^\ast q}\right|\) for hyperbolic distance. Use the formula \(d(p,q) =
2\arctan(u)\text{,}\) with \(u=\left|\frac{q-p}{1+p^\ast
q}\right|\) for elliptic distance. The identities from part \((a)\) will be useful.