8.5: Solving Nonlinear Systems
( \newcommand{\kernel}{\mathrm{null}\,}\)
Learning Objectives
- Identify nonlinear systems.
- Solve nonlinear systems using the substitution method.
Nonlinear Systems
A system of equations where at least one equation is not linear is called a nonlinear system32. In this section we will use the substitution method to solve nonlinear systems. Recall that solutions to a system with two variables are ordered pairs (x,y) that satisfy both equations.
Example 8.5.1:
Solve: {x+2y=0x2+y2=5.
Solution
In this case we begin by solving for x in the first equation.
{x+2y=0x2+y2=5⟹x=−2y
Substitute x=−2y into the second equation and then solve for y.
(−2y)2+y2=54y2+y2=55y2=5y2=1y=±1
Here there are two answers for y; use x=−2y to find the corresponding x-values.
Using y=−1 | Using y=1 |
---|---|
x=−2y=−2(−1)=2 | x=−2y=−2(1)=−2 |
This gives us two ordered pair solutions, (2,−1) and (−2,1).
Answer:
(2,−1),(−2,1)
In the previous example, the given system consisted of a line and a circle. Graphing these equations on the same set of axes, we can see that the two ordered pair solutions correspond to the two points of intersection.

If we are given a system consisting of a circle and a line, then there are 3 possibilities for real solutions—two solutions as pictured above, one solution, or no solution.

Example 8.5.2
Solve: {x+y=3x2+y2=2.
Solution
Solve for y in the first equation.
{x+yx2+y2
Next, substitute y=3−x into the second equation and then solve for x.
x2+(3−x)2=2x2+9−6x+x2=22x2−6x+9=22x2−6x+7=0
The resulting equation does not factor. Furthermore, using a=2,b=−6, and c=7 we can see that the discriminant is negative:
b2−4ac=(−6)2−4(2)(7)=36−56=−20
We conclude that there are no real solutions to this equation and thus no solution to the system.
Answer:
Ø
Exercise \PageIndex{1}
Solve: \left\{\begin{aligned} x-y &=5 \\ x^{2}+(y+1)^{2} &=8 \end{aligned}\right.
- Answer
-
(2,−3)
www.youtube.com/v/ToIrjw-8SNA
If given a circle and a parabola, then there are 5 possibilities for solutions.


When using the substitution method, we can perform the substitution step using entire algebraic expressions. The goal is to produce a single equation in one variable that can be solved using the techniques learned up to this point in our study of algebra.
Example \PageIndex{3}:
Solve: \left\{\begin{array}{c}{x^{2}+y^{2}=2} \\ {y-x^{2}=-2}\end{array}\right..
Solution
We can solve for x^{2} in the second equation.
\left\{\begin{array}{l}{x^{2}+y^{2}=2} \\ {y-x^{2}=-2 \quad \Rightarrow \quad y+2=x^{2}}\end{array}\right.
Substitute x^{2}=y+2 into the first equation and then solve for y.
\begin{aligned} \color{Cerulean}{y+2}\color{black}{+}y^{2} &=2 \\ y^{2}+y &=0 \\ y(y+1) &=0 \\ y &=0 \quad \text { or } \quad y=-1 \end{aligned}
Back substitute into x^{2}=y+2 to find the corresponding x-values.
Using y=-1 | Using y=0 |
---|---|
\begin{aligned} x^{2} &=y+2 \\ x^{2} &=\color{Cerulean}{-1}\color{black}{+}2 \\ x^{2} &=1 \\ x &=\pm 1 \end{aligned} | \begin{aligned} x^{2} &=y+2 \\ x^{2} &=\color{Cerulean}{0}\color{black}{+}2 \\ x^{2} &=2 \\ x &=\pm \sqrt{2} \end{aligned} |
This leads us to four solutions, (±1,−1) and (\pm \sqrt{2}, 0).
Answer:
(\pm 1,-1),(\pm \sqrt{2}, 0)
Example \PageIndex{4}
Solve: \left\{\begin{aligned}(x-1)^{2}-2 y^{2} &=4 \\ x^{2}+y^{2} &=9 \end{aligned}\right.
Solution
We can solve for y^{2} in the second equation,
\left\{\begin{array}{r}{(x-1)^{2}-2 y^{2}=4} \\ {x^{2}+y^{2}=9}\end{array}\right. \Longrightarrow y^{2}=9-x^{2}
Substitute y^{2}=9−x^{2} into the first equation and then solve for x.
\begin{aligned}(x-1)^{2}-2\color{black}{\left(\color{Cerulean}{9-x^{2}}\right) }&=4 \\ x^{2}-2 x+1-18+2 x^{2} &=0 \\ 3 x^{2}-2 x-21 &=0 \\(3 x+7)(x-3) &=0 \\ 3 x+7 &=0 \text { or } x-3=0 \\ x &=-\frac{7}{3} \quad x=3 \end{aligned}
Back substitute into y^{2}=9−x^{2} to find the corresponding y-values.
Using x=-\frac{7}{3} | Using x=3 |
---|---|
\begin{array}{l}{y^{2}=9-\color{black}{\left(\color{Cerulean}{-\frac{7}{3}}\right)^{2}}} \\ {y^{2}=\frac{9}{1}-\frac{49}{9}} \\ {y^{2}=\frac{32}{9}} \\ {y=\pm \frac{\sqrt{32}}{3}=\pm \frac{4 \sqrt{2}}{3}}\end{array} | \begin{aligned} y^{2} &=9-(\color{Cerulean}{3}\color{black}{)}^{2} \\ y^{2} &=0 \\ y &=0 \end{aligned} |
This leads to three solutions, \left(-\frac{7}{3}, \pm \frac{4 \sqrt{2}}{3}\right) and (3,0).
Answer:
(3,0),\left(-\frac{7}{3}, \pm \frac{4 \sqrt{2}}{3}\right)
Example \PageIndex{5}
Solve: \left\{\begin{aligned} x^{2}+y^{2} &=2 \\ x y &=1 \end{aligned}\right..
Solution
Solve for y in the second equation.
\left\{\begin{array}{r}{x^{2}+y^{2}=2} \\ {x y=1}\end{array}\right.\Longrightarrow y=\frac{1}{x}
Substitute y=\frac{1}{x} into the first equation and then solve for x.
x^{2}+\left(\frac{1}{x}\right)^{2}=2
x^{2}+\frac{1}{x^{2}}=2
This leaves us with a rational equation. Make a note that x≠0 and multiply both sides by x^{2}.
\begin{aligned} \color{Cerulean}{x^{2}}\color{black}{\left(x^{2}+\frac{1}{x^{2}}\right)} &=2 \cdot \color{Cerulean}{x^{2}} \\ x^{4}+1 &=2 x^{2} \\ x^{4}-2 x^{2}+1 &=0 \\\left(x^{2}-1\right)\left(x^{2}-1\right) &=0 \end{aligned}
At this point we can see that both factors are the same. Apply the zero product property.
\begin{aligned} x^{2}-1 &=0 \\ x^{2} &=1 \\ x &=\pm 1 \end{aligned}
Back substitute into y=\frac{1}{x} to find the corresponding y-values.
Using x=-1 | Using x=1 |
---|---|
\begin{aligned} y &=\frac{1}{x} \\ &=\frac{1}{\color{Cerulean}{-1}} \\ &=-1 \end{aligned} | \begin{aligned} y &=\frac{1}{x} \\ &=\frac{1}{\color{Cerulean}{1}} \\ &=1 \end{aligned} |
This leads to two solutions.
Answer:
(1,1),(-1,-1)
Exercise \PageIndex{2}
Solve: \left\{\begin{array}{r}{\frac{1}{x}+\frac{1}{y}=4} \\ {\frac{1}{x^{2}}+\frac{1}{y^{2}}=40}\end{array}\right.
- Answer
-
\left(-\frac{1}{2}, \frac{1}{6}\right)\left(\frac{1}{6},-\frac{1}{2}\right)
www.youtube.com/v/n8JJ_ybegkM
Key Takeaways
- Use the substitution method to solve nonlinear systems.
- Streamline the solving process by using entire algebraic expressions in the substitution step to obtain a single equation with one variable.
- Understanding the geometric interpretation of the system can help in finding real solutions.
Exercise \PageIndex{3}
Solve.
- \left\{\begin{array}{c}{x^{2}+y^{2}=10} \\ {x+y=4}\end{array}\right.
- \left\{\begin{array}{c}{x^{2}+y^{2}=5} \\ {x-y=-3}\end{array}\right.
- \left\{\begin{array}{l}{x^{2}+y^{2}=30} \\ {x-3 y=0}\end{array}\right.
- \left\{\begin{array}{c}{x^{2}+y^{2}=10} \\ {2 x-y=0}\end{array}\right.
- \left\{\begin{array}{c}{x^{2}+y^{2}=18} \\ {2 x-2 y=-12}\end{array}\right.
- \left\{\begin{aligned}(x-4)^{2}+y^{2} &=25 \\ 4 x-3 y &=16 \end{aligned}\right.
- \left\{\begin{array}{c}{3 x^{2}+2 y^{2}=21} \\ {3 x-y=0}\end{array}\right.
- \left\{\begin{aligned} x^{2}+5 y^{2} &=36 \\ x-2 y &=0 \end{aligned}\right.
- \left\{\begin{array}{c}{4 x^{2}+9 y^{2}=36} \\ {2 x+3 y=6}\end{array}\right.
- \left\{\begin{array}{c}{4 x^{2}+y^{2}=4} \\ {2 x+y=-2}\end{array}\right.
- \left\{\begin{array}{c}{2 x^{2}+y^{2}=1} \\ {x+y=1}\end{array}\right.
- \left\{\begin{array}{c}{4 x^{2}+3 y^{2}=12} \\ {2 x-y=2}\end{array}\right.
- \left\{\begin{aligned} x^{2}-2 y^{2} &=35 \\ x-3 y &=0 \end{aligned}\right.
- \left\{\begin{array}{c}{5 x^{2}-7 y^{2}=39} \\ {2 x+4 y=0}\end{array}\right.
- \left\{\begin{array}{c}{9 x^{2}-4 y^{2}=36} \\ {3 x+2 y=0}\end{array}\right.
- \left\{\begin{array}{l}{x^{2}+y^{2}=25} \\ {x-2 y=-12}\end{array}\right.
- \left\{\begin{array}{l}{2 x^{2}+3 y=9} \\ {8 x-4 y=12}\end{array}\right.
- \left\{\begin{array}{l}{2 x-4 y^{2}=3} \\ {3 x-12 y=6}\end{array}\right.
- \left\{\begin{aligned} 4 x^{2}+3 y^{2} &=12 \\ x-\frac{3}{2} &=0 \end{aligned}\right.
- \left\{\begin{aligned} 5 x^{2}+4 y^{2} &=40 \\ y-3 &=0 \end{aligned}\right.
- The sum of the squares of two positive integers is 10. If the first integer is added to twice the second integer, the sum is 7. Find the integers.
- The diagonal of a rectangle measures \sqrt{5} units and has a perimeter equal to 6 units. Find the dimensions of the rectangle.
- For what values of b will the following system have real solutions? \left\{\begin{array}{c}{x^{2}+y^{2}=1} \\ {y=x+b}\end{array}\right.
- For what values of m will be the following system have real solutions? \left\{\begin{array}{c}{x^{2}-y^{2}=1} \\ {y=m x}\end{array}\right.
- Answer
-
1. (1,3),(3,1)
3. (-3 \sqrt{3},-\sqrt{3}),(3 \sqrt{3}, \sqrt{3})
5. (-3,3)
7. (-1,-3),(1,3)
9. (0,2),(3,0)
11. (0,1),\left(\frac{2}{3}, \frac{1}{3}\right)
13. (-3 \sqrt{5},-\sqrt{5}),(3 \sqrt{5}, \sqrt{5})
15. \emptyset
17. \left(\frac{-3+3 \sqrt{5}}{2},-6+3 \sqrt{5}\right) ,\left(\frac{-3-3 \sqrt{5}}{2},-6-3 \sqrt{5}\right)
19. \left(\frac{3}{2},-1\right),\left(\frac{3}{2}, 1\right)
21. 1,3
23. b \in[-\sqrt{2}, \sqrt{2}]
Exercise \PageIndex{4}
Solve.
- \left\{\begin{array}{c}{x^{2}+y^{2}=4} \\ {y-x^{2}=2}\end{array}\right.
- \left\{\begin{array}{l}{x^{2}+y^{2}=4} \\ {y-x^{2}=-2}\end{array}\right.
- \left\{\begin{array}{c}{x^{2}+y^{2}=4} \\ {y-x^{2}=3}\end{array}\right.
- \left\{\begin{array}{c}{x^{2}+y^{2}=4} \\ {4 y-x^{2}=-4}\end{array}\right.
- \left\{\begin{array}{c}{x^{2}+3 y^{2}=9} \\ {y^{2}-x=3}\end{array}\right.
- \left\{\begin{array}{c}{x^{2}+3 y^{2}=9} \\ {x+y^{2}=-4}\end{array}\right.
- \left\{\begin{aligned} 4 x^{2}-3 y^{2} &=12 \\ x^{2}+y^{2} &=1 \end{aligned}\right.
- \left\{\begin{array}{l}{x^{2}+y^{2}=1} \\ {x^{2}-y^{2}=1}\end{array}\right.
- \left\{\begin{aligned} x^{2}+y^{2} &=1 \\ 4 y^{2}-x^{2}-4 y &=0 \end{aligned}\right.
- \left\{\begin{aligned} x^{2}+y^{2} &=4 \\ 2 x^{2}-y^{2}+4 x &=0 \end{aligned}\right.
- \left\{\begin{aligned} 2(x-2)^{2}+y^{2} &=6 \\(x-3)^{2}+y^{2} &=4 \end{aligned}\right.
- \left\{\begin{array}{c}{x^{2}+y^{2}-6 y=0} \\ {4 x^{2}+5 y^{2}+20 y=0}\end{array}\right.
- \left\{\begin{array}{l}{x^{2}+4 y^{2}=25} \\ {4 x^{2}+y^{2}=40}\end{array}\right.
- \left\{\begin{array}{c}{x^{2}-2 y^{2}=-10} \\ {4 x^{2}+y^{2}=10}\end{array}\right.
- \left\{\begin{array}{c}{2 x^{2}+y^{2}=14} \\ {x^{2}-(y-1)^{2}=6}\end{array}\right.
- \left\{\begin{array}{c}{3 x^{2}-(y-2)^{2}=12} \\ {x^{2}+(y-2)^{2}=1}\end{array}\right.
- The difference of the squares of two positive integers is 12. The sum of the larger integer and the square of the smaller is equal to 8. Find the integers.
- The difference between the length and width of a rectangle is 4 units and the diagonal measures 8 units. Find the dimensions of the rectangle. Round off to the nearest tenth.
- The diagonal of a rectangle measures p units and has a perimeter equal to 2q units. Find the dimensions of the rectangle in terms of p and q.
- The area of a rectangle is p square units and its perimeter is 2q units. Find the dimensions of the rectangle in terms of p and q.
- Answer
-
1. (0,2)
3. \emptyset
5. (-3,0),(0,-\sqrt{3}),(0, \sqrt{3})
7. \emptyset
9. (0,1),\left(-\frac{2 \sqrt{5}}{5},-\frac{1}{5}\right),\left(\frac{2 \sqrt{5}}{5},-\frac{1}{5}\right)
11. (3,-2),(3,2)
13. (-3,-2),(-3,2),(3,-2),(3,2)
15. (-\sqrt{7}, 0),(\sqrt{7}, 0),\left(-\frac{\sqrt{55}}{3}, \frac{4}{3}\right),\left(\frac{\sqrt{55}}{3}, \frac{4}{3}\right)
17. 2,4
19. \frac{q+\sqrt{2 p^{2}-q^{2}}}{2} units by \frac{q-\sqrt{2 p^{2}-q^{2}}}{2} units
Exercise \PageIndex{5}
Solve.
- \left\{\begin{aligned} x^{2}+y^{2} &=26 \\ x y &=5 \end{aligned}\right.
- \left\{\begin{aligned} x^{2}+y^{2} &=10 \\ x y &=3 \end{aligned}\right.
- \left\{\begin{aligned} 2 x^{2}-3 y^{2} &=5 \\ x y &=1 \end{aligned}\right.
- \left\{\begin{array}{c}{3 x^{2}-4 y^{2}=-11} \\ {x y=1}\end{array}\right.
- \left\{\begin{array}{c}{x^{2}+y^{2}=2} \\ {x y-2=0}\end{array}\right.
- \left\{\begin{array}{l}{x^{2}+y^{2}=1} \\ {2 x y-1=0}\end{array}\right.
- \left\{\begin{aligned} 4 x-y^{2} &=0 \\ x y &=2 \end{aligned}\right.
- \left\{\begin{array}{c}{3 y-x^{2}=0} \\ {x y-9=0}\end{array}\right.
- \left\{\begin{aligned} 2 y-x^{2} &=0 \\ x y-1 &=0 \end{aligned}\right.
- \left\{\begin{aligned} x-y^{2} &=0 \\ x y &=3 \end{aligned}\right.
- The diagonal of a rectangle measures 2\sqrt{10} units. If the area of the rectangle is 12 square units, find its dimensions.
- The area of a rectangle is 48 square meters and the perimeter measures 32 meters. Find the dimensions of the rectangle.
- The product of two positive integers is 72 and their sum is 18. Find the integers.
- The sum of the squares of two positive integers is 52 and their product is 24. Find the integers.
- Answer
-
1. (-5,-1),(5,1),(-1,-5),(1,5)
3. \left(-\sqrt{3},-\frac{\sqrt{3}}{3}\right),\left(\sqrt{3}, \frac{\sqrt{3}}{3}\right)
5. \emptyset
7. (1,2)
9. \left(\sqrt[3]{2}, \frac{\sqrt[3]{4}}{2}\right)
11. 2 units by 6 units
13. 6,12
Exercise \PageIndex{6}
Solve.
- \left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=4} \\ {\frac{1}{x}-\frac{1}{y}=2}\end{array}\right.
- \left\{\begin{array}{l}{\frac{2}{x}-\frac{1}{y}=5} \\ {\frac{1}{x}+\frac{1}{y}=2}\end{array}\right.
- \left\{\begin{array}{l}{\frac{1}{x}+\frac{2}{y}=1} \\ {\frac{3}{x}-\frac{1}{y}=2}\end{array}\right.
- \left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=6} \\ {\frac{1}{x^{2}}+\frac{1}{y^{2}}=20}\end{array}\right.
- \left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=2} \\ {\frac{1}{x^{2}}+\frac{1}{y^{2}}=34}\end{array}\right.
- \left\{\begin{array}{l}{x y-16=0} \\ {2 x^{2}-y=0}\end{array}\right.
- \left\{\begin{array}{l}{x+y^{2}=4} \\ {y=\sqrt{x}}\end{array}\right.
- \left\{\begin{array}{c}{y^{2}-(x-1)^{2}=1} \\ {y=\sqrt{x}}\end{array}\right.
- \left\{\begin{array}{l}{y=2^{x}} \\ {y=2^{2 x}-56}\end{array}\right.
- \left\{\begin{array}{l}{y=3^{2 x}-72} \\ {y-3^{x}=0}\end{array}\right.
- \left\{\begin{array}{l}{y=e^{4 x}} \\ {y=e^{2 x}+6}\end{array}\right.
- \left\{\begin{array}{l}{y-e^{2 x}=0} \\ {y-e^{x}=0}\end{array}\right.
- Answer
-
1. \left(\frac{1}{3}, 1\right)
3. \left(\frac{7}{5}, 7\right)
5. \left(-\frac{1}{3}, \frac{1}{5}\right),\left(\frac{1}{5},-\frac{1}{3}\right)
7. (2, \sqrt{2})
9. (3,8)
11. \left(\frac{\ln 3}{2}, 9\right)
Exercise \PageIndex{7}
- How many real solutions can be obtained from a system that consists of a circle and a hyperbola? Explain.
- Make up your own nonlinear system, solve it, and provide the answer. Also, provide a graph and discuss the geometric interpretation of the solutions.
- Answer
-
1. Answer may vary
Footnotes
32A system of equations where at least one equation is not linear.